Incorporating Mesoporous Anatase TiO2 Spheres to Conductive Carbon Black Filled PVDF Membrane for Self-Cleaning Photo(electro)catalytic Filtration

Polyvinylidene fluoride (PVDF) membranes have been widely used for micro/ultrafiltration. However, their hydrophobicity leads to serious membrane fouling over time during the process of dye decolorization, which limits their practical application. Herein, PVDF, mesoporous TiO2 spheres (MTS, ∼460 nm)...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physical chemistry. C 2023-05, Vol.127 (17), p.7998-8005
Hauptverfasser: Ma, Jing, Tang, Yang, Lu, Gui, Wang, Yu, Niu, Wenke, Fu, Dong, Zhang, Kai, Bahnemann, Detlef W., Pan, Jia Hong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Polyvinylidene fluoride (PVDF) membranes have been widely used for micro/ultrafiltration. However, their hydrophobicity leads to serious membrane fouling over time during the process of dye decolorization, which limits their practical application. Herein, PVDF, mesoporous TiO2 spheres (MTS, ∼460 nm), and carbon black (CB) are strategically hybridized via a polyvinylpyrrolidone (PVP)-assisted phase inversion method. The fabricated PVDF/CB/TiO2 conductive membrane prepared by optimal low-molecular-weight PVP (10 kDa) shows a highly porous structure with macro-voids, and MTS are firmly incorporated into the PVDF/CB membrane matrix with a morphologically intact structure, rendering the ternary and conductive membranes with excellent PEC properties. The decolorization rate of 0.50 mg/L methylene blue (MB) reaches 98.6% under the condition of 1.0 V bias potential and simulated solar light irradiation in a continuous cross-flow filtration process. The •O2 – and •OH radicals and photogenerated holes (h+) are mainly responsible for MB decolorization in the PEC system. Our work provided a sustainable and efficient method for dye decolorization by combining the PEC system and membrane technology.
ISSN:1932-7447
1932-7455
DOI:10.1021/acs.jpcc.3c01346