Electronic Structure of 1D Lepidocrocite TiO2 as Revealed by Optical Absorption and Photoelectron Spectroscopy

We recently demonstrated scalable, one-pot syntheses of one-dimensional, titania lepidocrocite microfilaments by reacting Ti-containing water-insoluble, earth-abundant compounds such as TiC, TiB2, TiN, etc., with tetraalkylammonium hydroxide, TMAOH, for a few days at 85 °C under ambient pressure. Th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physical chemistry. C 2023-04, Vol.127 (15), p.7275-7283
Hauptverfasser: Colin-Ulloa, Erika, Martin, Julia L., Hanna, Ryan J., Frasch, Michelle H., Ramthun, Rebecca R., Badr, Hussein O., Uzarski, Joshua R., Barsoum, Michel W., Grimm, Ronald L., Titova, Lyubov V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We recently demonstrated scalable, one-pot syntheses of one-dimensional, titania lepidocrocite microfilaments by reacting Ti-containing water-insoluble, earth-abundant compounds such as TiC, TiB2, TiN, etc., with tetraalkylammonium hydroxide, TMAOH, for a few days at 85 °C under ambient pressure. The resulting one-dimensional lepidocrocite (1DL) titania-based nanofilaments, NFs, tend to self-align along the [100] growth direction to form microfilaments that sometimes self-align into pseudo-two-dimensional (2D) sheets. With sub-square-nanometer cross sections, the resulting band gap energy, E g, at 4.0 eV is one of the highest ever reported for a titania material. Despite a large band gap, the nanofilaments exhibit significant absorbance throughout the visible spectrum ascribable to intra-gap defect states based on UV–Vis absorbance data and ultraviolet photoelectron spectroscopy (UPS). UP spectra demonstrate work functions of 4.0 ± 0.3 eV vs vacuum and Fermi energies of 3.8 ± 0.1 eV with respect to the valence band edge. Transient absorption (TA) spectroscopy of the 1DL nanofilament thin films with sub-band-gap, visible-light illumination reveals photoexcitations with lifetimes in excess of nanoseconds. In combination with the established oxidative stability, long-lived visible photoexcitations bring forward possible applications of 1DL nanofilaments in photocatalysis and optoelectronics.
ISSN:1932-7447
1932-7455
DOI:10.1021/acs.jpcc.2c06719