Moisture Effect on the Threshold Switching of TOPO-Stabilized Sub-10 nm HfO2 Nanocrystals in Nanoscale Devices
The enduring demand for ever-increasing storage capacities inspires the development of new few nanometer-sized, high-performance memory devices. In this work, tri-n-octylphosphine oxide (TOPO)-stabilized sub-10 nm monoclinic HfO2 nanocrystals (NC) with a rod-like and spherical shape are synthesized...
Gespeichert in:
Veröffentlicht in: | Journal of physical chemistry. C 2022-11, Vol.126 (43), p.18571-18579 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The enduring demand for ever-increasing storage capacities inspires the development of new few nanometer-sized, high-performance memory devices. In this work, tri-n-octylphosphine oxide (TOPO)-stabilized sub-10 nm monoclinic HfO2 nanocrystals (NC) with a rod-like and spherical shape are synthesized and used to build up microscale and nanoscale test devices. The electrical characterization of these devices studied by cyclic current–voltage measurements reveals a redox-like behavior in ambient atmosphere and volatile threshold switching in vacuum. By employing a thorough spectroscopic and surface analysis (FT-IR and NMR spectroscopy and XPS), the origin of this behavior was elucidated. While the redox behavior is enabled by residual moisture present during clean-up of the NC and thin film preparation, which leads to a partial desorption of TOPO from the NC surface, threshold switching is obtained for dry TOPO-stabilized HfO2 NC in microchannel as well as in nanoelectrode devices addressing only a few sub-10 nm TOPO-stabilized HfO2 NC. The results show that integration of sub-10 nm HfO2 NC in nanoscale devices is feasible to build up switching elements. |
---|---|
ISSN: | 1932-7447 1932-7455 |
DOI: | 10.1021/acs.jpcc.2c06303 |