Impact of Cation Multiplicity on Halide Perovskite Defect Densities and Solar Cell Voltages

Metal-halide perovskites feature very low deep-defect densities, thereby enabling high operating voltages at the solar cell level. Here, by precise extraction of their absorption spectra, we find that the low deep-defect density is unaffected when cations such as Cs+ and Rb+ are added during the per...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physical chemistry. C 2020-12, Vol.124 (50), p.27333-27339
Hauptverfasser: Ledinský, Martin, Vlk, Aleš, Schönfeldová, Tereza, Holovský, Jakub, Aydin, Erkan, Dang, Hoang X, Hájková, Zdeňka, Landová, Lucie, Valenta, Jan, Fejfar, Antonín, De Wolf, Stefaan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Metal-halide perovskites feature very low deep-defect densities, thereby enabling high operating voltages at the solar cell level. Here, by precise extraction of their absorption spectra, we find that the low deep-defect density is unaffected when cations such as Cs+ and Rb+ are added during the perovskite synthesis. By comparing single crystals and polycrystalline thin films of methylammonium lead iodide/bromide, we find these defects to be predominantly localized at surfaces and grain boundaries. Furthermore, generally, for the most important photovoltaic materials, we demonstrate a strong correlation between their Urbach energy and open-circuit voltage deficiency at the solar cell level. Through external quantum yield photoluminescence efficiency measurements, we explain these results as a consequence of nonradiative open-circuit voltage losses in the solar cell. Finally, we define practical power conversion efficiency limits of solar cells by taking into account the Urbach energy.
ISSN:1932-7447
1932-7455
DOI:10.1021/acs.jpcc.0c08193