Interpretable Machine Learning for Accelerating Reverse Design and Optimizing CO2 Methanation Catalysts with High Activity at Low Temperatures
CO2 methanation represents a promising technological pathway for achieving efficient carbon dioxide resource utilization and mitigation of greenhouse gas emissions. However, the development of CO2 methanation catalysts with high activity at low temperatures (
Gespeichert in:
Veröffentlicht in: | Industrial & engineering chemistry research 2024-08, Vol.63 (33), p.14727-14747 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | CO2 methanation represents a promising technological pathway for achieving efficient carbon dioxide resource utilization and mitigation of greenhouse gas emissions. However, the development of CO2 methanation catalysts with high activity at low temperatures ( |
---|---|
ISSN: | 0888-5885 1520-5045 |
DOI: | 10.1021/acs.iecr.4c01708 |