Interpretable Machine Learning for Accelerating Reverse Design and Optimizing CO2 Methanation Catalysts with High Activity at Low Temperatures

CO2 methanation represents a promising technological pathway for achieving efficient carbon dioxide resource utilization and mitigation of greenhouse gas emissions. However, the development of CO2 methanation catalysts with high activity at low temperatures (

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Industrial & engineering chemistry research 2024-08, Vol.63 (33), p.14727-14747
Hauptverfasser: Yang, Qingchun, Bao, Runjie, Rong, Dongwen, Xiao, Jingxuan, Zhou, Jianlong, Zhao, Lei, Zhang, Dawei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:CO2 methanation represents a promising technological pathway for achieving efficient carbon dioxide resource utilization and mitigation of greenhouse gas emissions. However, the development of CO2 methanation catalysts with high activity at low temperatures (
ISSN:0888-5885
1520-5045
DOI:10.1021/acs.iecr.4c01708