Local Structure and Crystallization Transformation of Hydrous Ferric Arsenate in Acidic H2O–Fe(III)–As(V)–SO4 2– Systems: Implications for Acid Mine Drainage and Arsenic Geochemical Cycling

Hydrous ferric arsenate (HFA) is a common thermodynamically metastable phase in acid mine drainage (AMD). However, little is known regarding the structural forms and transformation mechanism of HFA. We investigated the local atomic structures and the crystallization transformation of HFA at various...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental science & technology 2024-04, Vol.58 (16), p.7176-7185
Hauptverfasser: Ma, Xu, Yuan, Zidan, Lin, Jinru, Cui, Yubo, Wang, Shaofeng, Pan, Yuanming, Chernikov, Roman, Long Cheung, Leo Ka, Deevsalar, Reza, Jia, Yongfeng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7185
container_issue 16
container_start_page 7176
container_title Environmental science & technology
container_volume 58
creator Ma, Xu
Yuan, Zidan
Lin, Jinru
Cui, Yubo
Wang, Shaofeng
Pan, Yuanming
Chernikov, Roman
Long Cheung, Leo Ka
Deevsalar, Reza
Jia, Yongfeng
description Hydrous ferric arsenate (HFA) is a common thermodynamically metastable phase in acid mine drainage (AMD). However, little is known regarding the structural forms and transformation mechanism of HFA. We investigated the local atomic structures and the crystallization transformation of HFA at various Fe­(III)/As­(V) ratios (2, 1, 0.5, 0.33, and 0.25) in acidic solutions (pH 1.2 and 1.8). The results show that the Fe­(III)/As­(V) in HFA decreases with decreasing initial Fe­(III)/As­(V) at acidic pHs. The degree of protonation of As­(V) in HFA increases with increasing As­(V) concentrations. The Fe K-edge extended X-ray absorption fine structure and X-ray absorption near-edge structure results reveal that each FeO6 is linked to more than two AsO4 in HFA precipitated at Fe­(III)/As­(V) < 1. Furthermore, the formation of scorodite (FeAsO4·2H2O) is greatly accelerated by decreasing the initial Fe­(III)/As­(V). The release of As­(V) from HFA is observed during its crystallization transformation process to scorodite at Fe­(III)/As­(V) < 1, which is different from that at Fe­(III)/As­(V) ≥ 1. Scanning electron microscopy results show that Oswald ripening is responsible for the coarsening of scorodite regardless of the initial Fe­(III)/As­(V) or pH. Moreover, the formation of crystalline ferric dihydrogen arsenate as an intermediate phase at Fe­(III)/As­(V) < 1 is responsible for the enhanced transformation rate from HFA to scorodite. This work provides new insights into the local atomic structure of HFA and its crystallization transformation that may occur in AMD and has important implications for arsenic geochemical cycling.
doi_str_mv 10.1021/acs.est.4c01235
format Article
fullrecord <record><control><sourceid>acs</sourceid><recordid>TN_cdi_acs_journals_10_1021_acs_est_4c01235</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>b666333815</sourcerecordid><originalsourceid>FETCH-LOGICAL-a121t-20385fdc209dca3e15cf2b48eadb236054ea1c9d939d3d32a25c901d9b91b69e3</originalsourceid><addsrcrecordid>eNotkb1OwzAUhS0EEqUws3osQin-iauYLSq0jVTUoQWxRY7tFFeJg-xkKBPvwDPxIjwJTtvp3HuG71zdA8AtRmOMCH4Q0o-1b8exRJhQdgYGmBEUsYThczBACNOI08n7JbjyfocQIhQlA_C7bKSo4Lp1nWw7p6GwCk7d3reiqsyXaE1j4cYJ68vG1ce1KeFir1zTeTjTzhkJU-e1Fa2GxsJUGhWsBVn9ff_M9CjLsrswpX701ut6FUMSFK5Dhq79I8zqz8rIA9rDkHIgwBdjNXxywlixPV51CAnkuW7kh65Nf_d0Lytjt9fgohSV1zcnHYLX2fNmuoiWq3k2TZeRwAS3EUE0YaWSBHElBdWYyZIUcaKFKgidIBZrgSVXnHJFFSWCMMkRVrzguJhwTYfg_sgNz853TedsSMsxyvsG8t4MDeSnBug_rBmBEA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Local Structure and Crystallization Transformation of Hydrous Ferric Arsenate in Acidic H2O–Fe(III)–As(V)–SO4 2– Systems: Implications for Acid Mine Drainage and Arsenic Geochemical Cycling</title><source>ACS Publications</source><creator>Ma, Xu ; Yuan, Zidan ; Lin, Jinru ; Cui, Yubo ; Wang, Shaofeng ; Pan, Yuanming ; Chernikov, Roman ; Long Cheung, Leo Ka ; Deevsalar, Reza ; Jia, Yongfeng</creator><creatorcontrib>Ma, Xu ; Yuan, Zidan ; Lin, Jinru ; Cui, Yubo ; Wang, Shaofeng ; Pan, Yuanming ; Chernikov, Roman ; Long Cheung, Leo Ka ; Deevsalar, Reza ; Jia, Yongfeng</creatorcontrib><description>Hydrous ferric arsenate (HFA) is a common thermodynamically metastable phase in acid mine drainage (AMD). However, little is known regarding the structural forms and transformation mechanism of HFA. We investigated the local atomic structures and the crystallization transformation of HFA at various Fe­(III)/As­(V) ratios (2, 1, 0.5, 0.33, and 0.25) in acidic solutions (pH 1.2 and 1.8). The results show that the Fe­(III)/As­(V) in HFA decreases with decreasing initial Fe­(III)/As­(V) at acidic pHs. The degree of protonation of As­(V) in HFA increases with increasing As­(V) concentrations. The Fe K-edge extended X-ray absorption fine structure and X-ray absorption near-edge structure results reveal that each FeO6 is linked to more than two AsO4 in HFA precipitated at Fe­(III)/As­(V) &lt; 1. Furthermore, the formation of scorodite (FeAsO4·2H2O) is greatly accelerated by decreasing the initial Fe­(III)/As­(V). The release of As­(V) from HFA is observed during its crystallization transformation process to scorodite at Fe­(III)/As­(V) &lt; 1, which is different from that at Fe­(III)/As­(V) ≥ 1. Scanning electron microscopy results show that Oswald ripening is responsible for the coarsening of scorodite regardless of the initial Fe­(III)/As­(V) or pH. Moreover, the formation of crystalline ferric dihydrogen arsenate as an intermediate phase at Fe­(III)/As­(V) &lt; 1 is responsible for the enhanced transformation rate from HFA to scorodite. This work provides new insights into the local atomic structure of HFA and its crystallization transformation that may occur in AMD and has important implications for arsenic geochemical cycling.</description><identifier>ISSN: 0013-936X</identifier><identifier>EISSN: 1520-5851</identifier><identifier>DOI: 10.1021/acs.est.4c01235</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>Occurrence, Fate, and Transport of Aquatic and Terrestrial Contaminants</subject><ispartof>Environmental science &amp; technology, 2024-04, Vol.58 (16), p.7176-7185</ispartof><rights>2024 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-9195-3776 ; 0009-0001-0249-8565 ; 0000-0002-6665-8062</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.est.4c01235$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.est.4c01235$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,27075,27923,27924,56737,56787</link.rule.ids></links><search><creatorcontrib>Ma, Xu</creatorcontrib><creatorcontrib>Yuan, Zidan</creatorcontrib><creatorcontrib>Lin, Jinru</creatorcontrib><creatorcontrib>Cui, Yubo</creatorcontrib><creatorcontrib>Wang, Shaofeng</creatorcontrib><creatorcontrib>Pan, Yuanming</creatorcontrib><creatorcontrib>Chernikov, Roman</creatorcontrib><creatorcontrib>Long Cheung, Leo Ka</creatorcontrib><creatorcontrib>Deevsalar, Reza</creatorcontrib><creatorcontrib>Jia, Yongfeng</creatorcontrib><title>Local Structure and Crystallization Transformation of Hydrous Ferric Arsenate in Acidic H2O–Fe(III)–As(V)–SO4 2– Systems: Implications for Acid Mine Drainage and Arsenic Geochemical Cycling</title><title>Environmental science &amp; technology</title><addtitle>Environ. Sci. Technol</addtitle><description>Hydrous ferric arsenate (HFA) is a common thermodynamically metastable phase in acid mine drainage (AMD). However, little is known regarding the structural forms and transformation mechanism of HFA. We investigated the local atomic structures and the crystallization transformation of HFA at various Fe­(III)/As­(V) ratios (2, 1, 0.5, 0.33, and 0.25) in acidic solutions (pH 1.2 and 1.8). The results show that the Fe­(III)/As­(V) in HFA decreases with decreasing initial Fe­(III)/As­(V) at acidic pHs. The degree of protonation of As­(V) in HFA increases with increasing As­(V) concentrations. The Fe K-edge extended X-ray absorption fine structure and X-ray absorption near-edge structure results reveal that each FeO6 is linked to more than two AsO4 in HFA precipitated at Fe­(III)/As­(V) &lt; 1. Furthermore, the formation of scorodite (FeAsO4·2H2O) is greatly accelerated by decreasing the initial Fe­(III)/As­(V). The release of As­(V) from HFA is observed during its crystallization transformation process to scorodite at Fe­(III)/As­(V) &lt; 1, which is different from that at Fe­(III)/As­(V) ≥ 1. Scanning electron microscopy results show that Oswald ripening is responsible for the coarsening of scorodite regardless of the initial Fe­(III)/As­(V) or pH. Moreover, the formation of crystalline ferric dihydrogen arsenate as an intermediate phase at Fe­(III)/As­(V) &lt; 1 is responsible for the enhanced transformation rate from HFA to scorodite. This work provides new insights into the local atomic structure of HFA and its crystallization transformation that may occur in AMD and has important implications for arsenic geochemical cycling.</description><subject>Occurrence, Fate, and Transport of Aquatic and Terrestrial Contaminants</subject><issn>0013-936X</issn><issn>1520-5851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNotkb1OwzAUhS0EEqUws3osQin-iauYLSq0jVTUoQWxRY7tFFeJg-xkKBPvwDPxIjwJTtvp3HuG71zdA8AtRmOMCH4Q0o-1b8exRJhQdgYGmBEUsYThczBACNOI08n7JbjyfocQIhQlA_C7bKSo4Lp1nWw7p6GwCk7d3reiqsyXaE1j4cYJ68vG1ce1KeFir1zTeTjTzhkJU-e1Fa2GxsJUGhWsBVn9ff_M9CjLsrswpX701ut6FUMSFK5Dhq79I8zqz8rIA9rDkHIgwBdjNXxywlixPV51CAnkuW7kh65Nf_d0Lytjt9fgohSV1zcnHYLX2fNmuoiWq3k2TZeRwAS3EUE0YaWSBHElBdWYyZIUcaKFKgidIBZrgSVXnHJFFSWCMMkRVrzguJhwTYfg_sgNz853TedsSMsxyvsG8t4MDeSnBug_rBmBEA</recordid><startdate>20240423</startdate><enddate>20240423</enddate><creator>Ma, Xu</creator><creator>Yuan, Zidan</creator><creator>Lin, Jinru</creator><creator>Cui, Yubo</creator><creator>Wang, Shaofeng</creator><creator>Pan, Yuanming</creator><creator>Chernikov, Roman</creator><creator>Long Cheung, Leo Ka</creator><creator>Deevsalar, Reza</creator><creator>Jia, Yongfeng</creator><general>American Chemical Society</general><scope/><orcidid>https://orcid.org/0000-0002-9195-3776</orcidid><orcidid>https://orcid.org/0009-0001-0249-8565</orcidid><orcidid>https://orcid.org/0000-0002-6665-8062</orcidid></search><sort><creationdate>20240423</creationdate><title>Local Structure and Crystallization Transformation of Hydrous Ferric Arsenate in Acidic H2O–Fe(III)–As(V)–SO4 2– Systems: Implications for Acid Mine Drainage and Arsenic Geochemical Cycling</title><author>Ma, Xu ; Yuan, Zidan ; Lin, Jinru ; Cui, Yubo ; Wang, Shaofeng ; Pan, Yuanming ; Chernikov, Roman ; Long Cheung, Leo Ka ; Deevsalar, Reza ; Jia, Yongfeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a121t-20385fdc209dca3e15cf2b48eadb236054ea1c9d939d3d32a25c901d9b91b69e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Occurrence, Fate, and Transport of Aquatic and Terrestrial Contaminants</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ma, Xu</creatorcontrib><creatorcontrib>Yuan, Zidan</creatorcontrib><creatorcontrib>Lin, Jinru</creatorcontrib><creatorcontrib>Cui, Yubo</creatorcontrib><creatorcontrib>Wang, Shaofeng</creatorcontrib><creatorcontrib>Pan, Yuanming</creatorcontrib><creatorcontrib>Chernikov, Roman</creatorcontrib><creatorcontrib>Long Cheung, Leo Ka</creatorcontrib><creatorcontrib>Deevsalar, Reza</creatorcontrib><creatorcontrib>Jia, Yongfeng</creatorcontrib><jtitle>Environmental science &amp; technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ma, Xu</au><au>Yuan, Zidan</au><au>Lin, Jinru</au><au>Cui, Yubo</au><au>Wang, Shaofeng</au><au>Pan, Yuanming</au><au>Chernikov, Roman</au><au>Long Cheung, Leo Ka</au><au>Deevsalar, Reza</au><au>Jia, Yongfeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Local Structure and Crystallization Transformation of Hydrous Ferric Arsenate in Acidic H2O–Fe(III)–As(V)–SO4 2– Systems: Implications for Acid Mine Drainage and Arsenic Geochemical Cycling</atitle><jtitle>Environmental science &amp; technology</jtitle><addtitle>Environ. Sci. Technol</addtitle><date>2024-04-23</date><risdate>2024</risdate><volume>58</volume><issue>16</issue><spage>7176</spage><epage>7185</epage><pages>7176-7185</pages><issn>0013-936X</issn><eissn>1520-5851</eissn><abstract>Hydrous ferric arsenate (HFA) is a common thermodynamically metastable phase in acid mine drainage (AMD). However, little is known regarding the structural forms and transformation mechanism of HFA. We investigated the local atomic structures and the crystallization transformation of HFA at various Fe­(III)/As­(V) ratios (2, 1, 0.5, 0.33, and 0.25) in acidic solutions (pH 1.2 and 1.8). The results show that the Fe­(III)/As­(V) in HFA decreases with decreasing initial Fe­(III)/As­(V) at acidic pHs. The degree of protonation of As­(V) in HFA increases with increasing As­(V) concentrations. The Fe K-edge extended X-ray absorption fine structure and X-ray absorption near-edge structure results reveal that each FeO6 is linked to more than two AsO4 in HFA precipitated at Fe­(III)/As­(V) &lt; 1. Furthermore, the formation of scorodite (FeAsO4·2H2O) is greatly accelerated by decreasing the initial Fe­(III)/As­(V). The release of As­(V) from HFA is observed during its crystallization transformation process to scorodite at Fe­(III)/As­(V) &lt; 1, which is different from that at Fe­(III)/As­(V) ≥ 1. Scanning electron microscopy results show that Oswald ripening is responsible for the coarsening of scorodite regardless of the initial Fe­(III)/As­(V) or pH. Moreover, the formation of crystalline ferric dihydrogen arsenate as an intermediate phase at Fe­(III)/As­(V) &lt; 1 is responsible for the enhanced transformation rate from HFA to scorodite. This work provides new insights into the local atomic structure of HFA and its crystallization transformation that may occur in AMD and has important implications for arsenic geochemical cycling.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.est.4c01235</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-9195-3776</orcidid><orcidid>https://orcid.org/0009-0001-0249-8565</orcidid><orcidid>https://orcid.org/0000-0002-6665-8062</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0013-936X
ispartof Environmental science & technology, 2024-04, Vol.58 (16), p.7176-7185
issn 0013-936X
1520-5851
language eng
recordid cdi_acs_journals_10_1021_acs_est_4c01235
source ACS Publications
subjects Occurrence, Fate, and Transport of Aquatic and Terrestrial Contaminants
title Local Structure and Crystallization Transformation of Hydrous Ferric Arsenate in Acidic H2O–Fe(III)–As(V)–SO4 2– Systems: Implications for Acid Mine Drainage and Arsenic Geochemical Cycling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T14%3A07%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Local%20Structure%20and%20Crystallization%20Transformation%20of%20Hydrous%20Ferric%20Arsenate%20in%20Acidic%20H2O%E2%80%93Fe(III)%E2%80%93As(V)%E2%80%93SO4%202%E2%80%93%20Systems:%20Implications%20for%20Acid%20Mine%20Drainage%20and%20Arsenic%20Geochemical%20Cycling&rft.jtitle=Environmental%20science%20&%20technology&rft.au=Ma,%20Xu&rft.date=2024-04-23&rft.volume=58&rft.issue=16&rft.spage=7176&rft.epage=7185&rft.pages=7176-7185&rft.issn=0013-936X&rft.eissn=1520-5851&rft_id=info:doi/10.1021/acs.est.4c01235&rft_dat=%3Cacs%3Eb666333815%3C/acs%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true