Local Structure and Crystallization Transformation of Hydrous Ferric Arsenate in Acidic H2O–Fe(III)–As(V)–SO4 2– Systems: Implications for Acid Mine Drainage and Arsenic Geochemical Cycling
Hydrous ferric arsenate (HFA) is a common thermodynamically metastable phase in acid mine drainage (AMD). However, little is known regarding the structural forms and transformation mechanism of HFA. We investigated the local atomic structures and the crystallization transformation of HFA at various...
Gespeichert in:
Veröffentlicht in: | Environmental science & technology 2024-04, Vol.58 (16), p.7176-7185 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7185 |
---|---|
container_issue | 16 |
container_start_page | 7176 |
container_title | Environmental science & technology |
container_volume | 58 |
creator | Ma, Xu Yuan, Zidan Lin, Jinru Cui, Yubo Wang, Shaofeng Pan, Yuanming Chernikov, Roman Long Cheung, Leo Ka Deevsalar, Reza Jia, Yongfeng |
description | Hydrous ferric arsenate (HFA) is a common thermodynamically metastable phase in acid mine drainage (AMD). However, little is known regarding the structural forms and transformation mechanism of HFA. We investigated the local atomic structures and the crystallization transformation of HFA at various Fe(III)/As(V) ratios (2, 1, 0.5, 0.33, and 0.25) in acidic solutions (pH 1.2 and 1.8). The results show that the Fe(III)/As(V) in HFA decreases with decreasing initial Fe(III)/As(V) at acidic pHs. The degree of protonation of As(V) in HFA increases with increasing As(V) concentrations. The Fe K-edge extended X-ray absorption fine structure and X-ray absorption near-edge structure results reveal that each FeO6 is linked to more than two AsO4 in HFA precipitated at Fe(III)/As(V) < 1. Furthermore, the formation of scorodite (FeAsO4·2H2O) is greatly accelerated by decreasing the initial Fe(III)/As(V). The release of As(V) from HFA is observed during its crystallization transformation process to scorodite at Fe(III)/As(V) < 1, which is different from that at Fe(III)/As(V) ≥ 1. Scanning electron microscopy results show that Oswald ripening is responsible for the coarsening of scorodite regardless of the initial Fe(III)/As(V) or pH. Moreover, the formation of crystalline ferric dihydrogen arsenate as an intermediate phase at Fe(III)/As(V) < 1 is responsible for the enhanced transformation rate from HFA to scorodite. This work provides new insights into the local atomic structure of HFA and its crystallization transformation that may occur in AMD and has important implications for arsenic geochemical cycling. |
doi_str_mv | 10.1021/acs.est.4c01235 |
format | Article |
fullrecord | <record><control><sourceid>acs</sourceid><recordid>TN_cdi_acs_journals_10_1021_acs_est_4c01235</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>b666333815</sourcerecordid><originalsourceid>FETCH-LOGICAL-a121t-20385fdc209dca3e15cf2b48eadb236054ea1c9d939d3d32a25c901d9b91b69e3</originalsourceid><addsrcrecordid>eNotkb1OwzAUhS0EEqUws3osQin-iauYLSq0jVTUoQWxRY7tFFeJg-xkKBPvwDPxIjwJTtvp3HuG71zdA8AtRmOMCH4Q0o-1b8exRJhQdgYGmBEUsYThczBACNOI08n7JbjyfocQIhQlA_C7bKSo4Lp1nWw7p6GwCk7d3reiqsyXaE1j4cYJ68vG1ce1KeFir1zTeTjTzhkJU-e1Fa2GxsJUGhWsBVn9ff_M9CjLsrswpX701ut6FUMSFK5Dhq79I8zqz8rIA9rDkHIgwBdjNXxywlixPV51CAnkuW7kh65Nf_d0Lytjt9fgohSV1zcnHYLX2fNmuoiWq3k2TZeRwAS3EUE0YaWSBHElBdWYyZIUcaKFKgidIBZrgSVXnHJFFSWCMMkRVrzguJhwTYfg_sgNz853TedsSMsxyvsG8t4MDeSnBug_rBmBEA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Local Structure and Crystallization Transformation of Hydrous Ferric Arsenate in Acidic H2O–Fe(III)–As(V)–SO4 2– Systems: Implications for Acid Mine Drainage and Arsenic Geochemical Cycling</title><source>ACS Publications</source><creator>Ma, Xu ; Yuan, Zidan ; Lin, Jinru ; Cui, Yubo ; Wang, Shaofeng ; Pan, Yuanming ; Chernikov, Roman ; Long Cheung, Leo Ka ; Deevsalar, Reza ; Jia, Yongfeng</creator><creatorcontrib>Ma, Xu ; Yuan, Zidan ; Lin, Jinru ; Cui, Yubo ; Wang, Shaofeng ; Pan, Yuanming ; Chernikov, Roman ; Long Cheung, Leo Ka ; Deevsalar, Reza ; Jia, Yongfeng</creatorcontrib><description>Hydrous ferric arsenate (HFA) is a common thermodynamically metastable phase in acid mine drainage (AMD). However, little is known regarding the structural forms and transformation mechanism of HFA. We investigated the local atomic structures and the crystallization transformation of HFA at various Fe(III)/As(V) ratios (2, 1, 0.5, 0.33, and 0.25) in acidic solutions (pH 1.2 and 1.8). The results show that the Fe(III)/As(V) in HFA decreases with decreasing initial Fe(III)/As(V) at acidic pHs. The degree of protonation of As(V) in HFA increases with increasing As(V) concentrations. The Fe K-edge extended X-ray absorption fine structure and X-ray absorption near-edge structure results reveal that each FeO6 is linked to more than two AsO4 in HFA precipitated at Fe(III)/As(V) < 1. Furthermore, the formation of scorodite (FeAsO4·2H2O) is greatly accelerated by decreasing the initial Fe(III)/As(V). The release of As(V) from HFA is observed during its crystallization transformation process to scorodite at Fe(III)/As(V) < 1, which is different from that at Fe(III)/As(V) ≥ 1. Scanning electron microscopy results show that Oswald ripening is responsible for the coarsening of scorodite regardless of the initial Fe(III)/As(V) or pH. Moreover, the formation of crystalline ferric dihydrogen arsenate as an intermediate phase at Fe(III)/As(V) < 1 is responsible for the enhanced transformation rate from HFA to scorodite. This work provides new insights into the local atomic structure of HFA and its crystallization transformation that may occur in AMD and has important implications for arsenic geochemical cycling.</description><identifier>ISSN: 0013-936X</identifier><identifier>EISSN: 1520-5851</identifier><identifier>DOI: 10.1021/acs.est.4c01235</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>Occurrence, Fate, and Transport of Aquatic and Terrestrial Contaminants</subject><ispartof>Environmental science & technology, 2024-04, Vol.58 (16), p.7176-7185</ispartof><rights>2024 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-9195-3776 ; 0009-0001-0249-8565 ; 0000-0002-6665-8062</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.est.4c01235$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.est.4c01235$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,27075,27923,27924,56737,56787</link.rule.ids></links><search><creatorcontrib>Ma, Xu</creatorcontrib><creatorcontrib>Yuan, Zidan</creatorcontrib><creatorcontrib>Lin, Jinru</creatorcontrib><creatorcontrib>Cui, Yubo</creatorcontrib><creatorcontrib>Wang, Shaofeng</creatorcontrib><creatorcontrib>Pan, Yuanming</creatorcontrib><creatorcontrib>Chernikov, Roman</creatorcontrib><creatorcontrib>Long Cheung, Leo Ka</creatorcontrib><creatorcontrib>Deevsalar, Reza</creatorcontrib><creatorcontrib>Jia, Yongfeng</creatorcontrib><title>Local Structure and Crystallization Transformation of Hydrous Ferric Arsenate in Acidic H2O–Fe(III)–As(V)–SO4 2– Systems: Implications for Acid Mine Drainage and Arsenic Geochemical Cycling</title><title>Environmental science & technology</title><addtitle>Environ. Sci. Technol</addtitle><description>Hydrous ferric arsenate (HFA) is a common thermodynamically metastable phase in acid mine drainage (AMD). However, little is known regarding the structural forms and transformation mechanism of HFA. We investigated the local atomic structures and the crystallization transformation of HFA at various Fe(III)/As(V) ratios (2, 1, 0.5, 0.33, and 0.25) in acidic solutions (pH 1.2 and 1.8). The results show that the Fe(III)/As(V) in HFA decreases with decreasing initial Fe(III)/As(V) at acidic pHs. The degree of protonation of As(V) in HFA increases with increasing As(V) concentrations. The Fe K-edge extended X-ray absorption fine structure and X-ray absorption near-edge structure results reveal that each FeO6 is linked to more than two AsO4 in HFA precipitated at Fe(III)/As(V) < 1. Furthermore, the formation of scorodite (FeAsO4·2H2O) is greatly accelerated by decreasing the initial Fe(III)/As(V). The release of As(V) from HFA is observed during its crystallization transformation process to scorodite at Fe(III)/As(V) < 1, which is different from that at Fe(III)/As(V) ≥ 1. Scanning electron microscopy results show that Oswald ripening is responsible for the coarsening of scorodite regardless of the initial Fe(III)/As(V) or pH. Moreover, the formation of crystalline ferric dihydrogen arsenate as an intermediate phase at Fe(III)/As(V) < 1 is responsible for the enhanced transformation rate from HFA to scorodite. This work provides new insights into the local atomic structure of HFA and its crystallization transformation that may occur in AMD and has important implications for arsenic geochemical cycling.</description><subject>Occurrence, Fate, and Transport of Aquatic and Terrestrial Contaminants</subject><issn>0013-936X</issn><issn>1520-5851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNotkb1OwzAUhS0EEqUws3osQin-iauYLSq0jVTUoQWxRY7tFFeJg-xkKBPvwDPxIjwJTtvp3HuG71zdA8AtRmOMCH4Q0o-1b8exRJhQdgYGmBEUsYThczBACNOI08n7JbjyfocQIhQlA_C7bKSo4Lp1nWw7p6GwCk7d3reiqsyXaE1j4cYJ68vG1ce1KeFir1zTeTjTzhkJU-e1Fa2GxsJUGhWsBVn9ff_M9CjLsrswpX701ut6FUMSFK5Dhq79I8zqz8rIA9rDkHIgwBdjNXxywlixPV51CAnkuW7kh65Nf_d0Lytjt9fgohSV1zcnHYLX2fNmuoiWq3k2TZeRwAS3EUE0YaWSBHElBdWYyZIUcaKFKgidIBZrgSVXnHJFFSWCMMkRVrzguJhwTYfg_sgNz853TedsSMsxyvsG8t4MDeSnBug_rBmBEA</recordid><startdate>20240423</startdate><enddate>20240423</enddate><creator>Ma, Xu</creator><creator>Yuan, Zidan</creator><creator>Lin, Jinru</creator><creator>Cui, Yubo</creator><creator>Wang, Shaofeng</creator><creator>Pan, Yuanming</creator><creator>Chernikov, Roman</creator><creator>Long Cheung, Leo Ka</creator><creator>Deevsalar, Reza</creator><creator>Jia, Yongfeng</creator><general>American Chemical Society</general><scope/><orcidid>https://orcid.org/0000-0002-9195-3776</orcidid><orcidid>https://orcid.org/0009-0001-0249-8565</orcidid><orcidid>https://orcid.org/0000-0002-6665-8062</orcidid></search><sort><creationdate>20240423</creationdate><title>Local Structure and Crystallization Transformation of Hydrous Ferric Arsenate in Acidic H2O–Fe(III)–As(V)–SO4 2– Systems: Implications for Acid Mine Drainage and Arsenic Geochemical Cycling</title><author>Ma, Xu ; Yuan, Zidan ; Lin, Jinru ; Cui, Yubo ; Wang, Shaofeng ; Pan, Yuanming ; Chernikov, Roman ; Long Cheung, Leo Ka ; Deevsalar, Reza ; Jia, Yongfeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a121t-20385fdc209dca3e15cf2b48eadb236054ea1c9d939d3d32a25c901d9b91b69e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Occurrence, Fate, and Transport of Aquatic and Terrestrial Contaminants</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ma, Xu</creatorcontrib><creatorcontrib>Yuan, Zidan</creatorcontrib><creatorcontrib>Lin, Jinru</creatorcontrib><creatorcontrib>Cui, Yubo</creatorcontrib><creatorcontrib>Wang, Shaofeng</creatorcontrib><creatorcontrib>Pan, Yuanming</creatorcontrib><creatorcontrib>Chernikov, Roman</creatorcontrib><creatorcontrib>Long Cheung, Leo Ka</creatorcontrib><creatorcontrib>Deevsalar, Reza</creatorcontrib><creatorcontrib>Jia, Yongfeng</creatorcontrib><jtitle>Environmental science & technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ma, Xu</au><au>Yuan, Zidan</au><au>Lin, Jinru</au><au>Cui, Yubo</au><au>Wang, Shaofeng</au><au>Pan, Yuanming</au><au>Chernikov, Roman</au><au>Long Cheung, Leo Ka</au><au>Deevsalar, Reza</au><au>Jia, Yongfeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Local Structure and Crystallization Transformation of Hydrous Ferric Arsenate in Acidic H2O–Fe(III)–As(V)–SO4 2– Systems: Implications for Acid Mine Drainage and Arsenic Geochemical Cycling</atitle><jtitle>Environmental science & technology</jtitle><addtitle>Environ. Sci. Technol</addtitle><date>2024-04-23</date><risdate>2024</risdate><volume>58</volume><issue>16</issue><spage>7176</spage><epage>7185</epage><pages>7176-7185</pages><issn>0013-936X</issn><eissn>1520-5851</eissn><abstract>Hydrous ferric arsenate (HFA) is a common thermodynamically metastable phase in acid mine drainage (AMD). However, little is known regarding the structural forms and transformation mechanism of HFA. We investigated the local atomic structures and the crystallization transformation of HFA at various Fe(III)/As(V) ratios (2, 1, 0.5, 0.33, and 0.25) in acidic solutions (pH 1.2 and 1.8). The results show that the Fe(III)/As(V) in HFA decreases with decreasing initial Fe(III)/As(V) at acidic pHs. The degree of protonation of As(V) in HFA increases with increasing As(V) concentrations. The Fe K-edge extended X-ray absorption fine structure and X-ray absorption near-edge structure results reveal that each FeO6 is linked to more than two AsO4 in HFA precipitated at Fe(III)/As(V) < 1. Furthermore, the formation of scorodite (FeAsO4·2H2O) is greatly accelerated by decreasing the initial Fe(III)/As(V). The release of As(V) from HFA is observed during its crystallization transformation process to scorodite at Fe(III)/As(V) < 1, which is different from that at Fe(III)/As(V) ≥ 1. Scanning electron microscopy results show that Oswald ripening is responsible for the coarsening of scorodite regardless of the initial Fe(III)/As(V) or pH. Moreover, the formation of crystalline ferric dihydrogen arsenate as an intermediate phase at Fe(III)/As(V) < 1 is responsible for the enhanced transformation rate from HFA to scorodite. This work provides new insights into the local atomic structure of HFA and its crystallization transformation that may occur in AMD and has important implications for arsenic geochemical cycling.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.est.4c01235</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-9195-3776</orcidid><orcidid>https://orcid.org/0009-0001-0249-8565</orcidid><orcidid>https://orcid.org/0000-0002-6665-8062</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0013-936X |
ispartof | Environmental science & technology, 2024-04, Vol.58 (16), p.7176-7185 |
issn | 0013-936X 1520-5851 |
language | eng |
recordid | cdi_acs_journals_10_1021_acs_est_4c01235 |
source | ACS Publications |
subjects | Occurrence, Fate, and Transport of Aquatic and Terrestrial Contaminants |
title | Local Structure and Crystallization Transformation of Hydrous Ferric Arsenate in Acidic H2O–Fe(III)–As(V)–SO4 2– Systems: Implications for Acid Mine Drainage and Arsenic Geochemical Cycling |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T14%3A07%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Local%20Structure%20and%20Crystallization%20Transformation%20of%20Hydrous%20Ferric%20Arsenate%20in%20Acidic%20H2O%E2%80%93Fe(III)%E2%80%93As(V)%E2%80%93SO4%202%E2%80%93%20Systems:%20Implications%20for%20Acid%20Mine%20Drainage%20and%20Arsenic%20Geochemical%20Cycling&rft.jtitle=Environmental%20science%20&%20technology&rft.au=Ma,%20Xu&rft.date=2024-04-23&rft.volume=58&rft.issue=16&rft.spage=7176&rft.epage=7185&rft.pages=7176-7185&rft.issn=0013-936X&rft.eissn=1520-5851&rft_id=info:doi/10.1021/acs.est.4c01235&rft_dat=%3Cacs%3Eb666333815%3C/acs%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |