Local Structure and Crystallization Transformation of Hydrous Ferric Arsenate in Acidic H2O–Fe(III)–As(V)–SO4 2– Systems: Implications for Acid Mine Drainage and Arsenic Geochemical Cycling

Hydrous ferric arsenate (HFA) is a common thermodynamically metastable phase in acid mine drainage (AMD). However, little is known regarding the structural forms and transformation mechanism of HFA. We investigated the local atomic structures and the crystallization transformation of HFA at various...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental science & technology 2024-04, Vol.58 (16), p.7176-7185
Hauptverfasser: Ma, Xu, Yuan, Zidan, Lin, Jinru, Cui, Yubo, Wang, Shaofeng, Pan, Yuanming, Chernikov, Roman, Long Cheung, Leo Ka, Deevsalar, Reza, Jia, Yongfeng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Hydrous ferric arsenate (HFA) is a common thermodynamically metastable phase in acid mine drainage (AMD). However, little is known regarding the structural forms and transformation mechanism of HFA. We investigated the local atomic structures and the crystallization transformation of HFA at various Fe­(III)/As­(V) ratios (2, 1, 0.5, 0.33, and 0.25) in acidic solutions (pH 1.2 and 1.8). The results show that the Fe­(III)/As­(V) in HFA decreases with decreasing initial Fe­(III)/As­(V) at acidic pHs. The degree of protonation of As­(V) in HFA increases with increasing As­(V) concentrations. The Fe K-edge extended X-ray absorption fine structure and X-ray absorption near-edge structure results reveal that each FeO6 is linked to more than two AsO4 in HFA precipitated at Fe­(III)/As­(V) < 1. Furthermore, the formation of scorodite (FeAsO4·2H2O) is greatly accelerated by decreasing the initial Fe­(III)/As­(V). The release of As­(V) from HFA is observed during its crystallization transformation process to scorodite at Fe­(III)/As­(V) < 1, which is different from that at Fe­(III)/As­(V) ≥ 1. Scanning electron microscopy results show that Oswald ripening is responsible for the coarsening of scorodite regardless of the initial Fe­(III)/As­(V) or pH. Moreover, the formation of crystalline ferric dihydrogen arsenate as an intermediate phase at Fe­(III)/As­(V) < 1 is responsible for the enhanced transformation rate from HFA to scorodite. This work provides new insights into the local atomic structure of HFA and its crystallization transformation that may occur in AMD and has important implications for arsenic geochemical cycling.
ISSN:0013-936X
1520-5851
DOI:10.1021/acs.est.4c01235