How Does Chitosan Affect Methane Production in Anaerobic Digestion?

The expanding use of chitosan in sewage and sludge treatment processes raises concerns about its potential environmental impacts. However, investigations of the impacts of chitosan on sewage sludge anaerobic digestion where chitosan is present at substantial levels are sparse. This study therefore a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental science & technology 2021-12, Vol.55 (23), p.15843-15852
Hauptverfasser: Liu, Xuran, Du, Mingting, Lu, Qi, He, Dandan, Song, Kang, Yang, Qi, Duan, Abing, Wang, Dongbo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The expanding use of chitosan in sewage and sludge treatment processes raises concerns about its potential environmental impacts. However, investigations of the impacts of chitosan on sewage sludge anaerobic digestion where chitosan is present at substantial levels are sparse. This study therefore aims to fill this knowledge gap through both long-term and batch tests. The results showed that 4 g/kg total suspended solid (TSS) chitosan had no acute effects on methane production, but chitosan at 8–32 g/kg TSS inhibited methane production by 7.2–30.3%. Mass balance and metabolism of organic analyses indicated that chitosan restrained the transfer of organic substrates from solid phase to liquid phase, macromolecules to micromolecules, and finally to methane. Further exploration revealed that chitosan suppressed the secretion of extracellular polymeric substances of anaerobes by occupying the connection sites of indigenous carbohydrates and increased the mass transfer resistance between anaerobes and substrates, which thereby lowered the metabolic activities of anaerobes. Although chitosan could be partly degraded by anaerobes, it is much more persistent to be degraded compared with indigenous organics in sludge. Microbial community and key enzyme encoding gene analyses further revealed that the inhibition of chitosan to CO2-dependent methanogenesis was much severer than that to acetate-dependent methanogenesis.
ISSN:0013-936X
1520-5851
DOI:10.1021/acs.est.1c04693