Exploring the Impact of Aluminum Substitution on the Structural Stability of LiMn2O4/C Cathode Materials for Lithium-Ion Batteries

Aluminum is substituted for manganese in spinel LiMn2O4 (LMO) materials to enhance their structural and electrochemical properties as cathodes for next-generation Li-ion batteries (LIBs). The computation method, in conjunction with the effect of aluminum (Al) substitution, performed a basic optimiza...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy & fuels 2024-02, Vol.38 (3), p.2404-2415
Hauptverfasser: Kim, Seokhun, Jo, Jeonggeun, Lee, Ohjeong, Sambandam, Balaji, Mathew, Vinod, Alfaruqi, Muhammad Hilmy, Kim, Sungjin, Nam, Sukyeung, Han, Seungmi, Kim, Jaekook
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Aluminum is substituted for manganese in spinel LiMn2O4 (LMO) materials to enhance their structural and electrochemical properties as cathodes for next-generation Li-ion batteries (LIBs). The computation method, in conjunction with the effect of aluminum (Al) substitution, performed a basic optimization of the initial step of this report. The phase purity and Al substitution in the Mn sites were confirmed using powder X-ray diffraction and X-ray photoelectron spectroscopy. Utilizing electron microscopy, we established that the agglomeration of nanosized Al-doped LMO particles with improved grain distribution is dependent on the Al content (X), respectively. The prepared Al-doped LMO cathode exhibited outstanding electrochemical properties depending on the amount of Al substitution. In detail, LiMn1.975Al0.025O4 shows a superior high rate performance of 109.5 mAh g–1 at 10C, which corresponds to 81.1% initial capacity retention at 0.1C within the 3.3–4.3 V potential window. LiMn1.95Al0.05O4, a higher Al composition material, shows excellent cycle performance of 93.3% capacity retention after 100 cycles at 0.1C when compared to the initial capacity within the same potential window. The remarkable cycle and rate performance of the Al-doped LMO cathodes can be ascribed to the combined effect of the enhanced structural properties and the well-distributed grains resulting from Mn3+/Mn4+ substitution with Al3+ ions. Furthermore, from the cyclic voltammetry and impedance characterizations, we identified a highly stable electrochemical reaction and high rate performance in the LMO electrode with 0.025 Al content.
ISSN:0887-0624
1520-5029
DOI:10.1021/acs.energyfuels.3c03474