CuInS2 Nanosheet Arrays with a MoS2 Heterojunction as a Photocathode for PEC Water Splitting

Developing cost-effective noble metal-free co-catalysts as alternatives to platinum group metals is an impeccable strategy to enhance photoelectrochemical (PEC) water splitting. In this report, we successfully fabricated CuInS2 nanosheet array-based photocathode modified with CdS and co-catalyst MoS...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy & fuels 2023-02, Vol.37 (3), p.2340-2349
Hauptverfasser: Kumar, Mohit, Meena, Bhagatram, Subramanyam, Palyam, Ummethala, Govind, Malladi, Sai Rama Krishna, Dutta-Gupta, Shourya, Subrahmanyam, Challapalli
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Developing cost-effective noble metal-free co-catalysts as alternatives to platinum group metals is an impeccable strategy to enhance photoelectrochemical (PEC) water splitting. In this report, we successfully fabricated CuInS2 nanosheet array-based photocathode modified with CdS and co-catalyst MoS2 in a green approach to improve water splitting under solar irradiation. The visible light absorption of the modified hybrid photocathode (CIS/CdS/MoS2) was significantly enhanced due to introducing CdS and MoS2. Photoluminescence, impedance spectroscopy, and Mott–Schottky analysis depicted improved separation of excited electron–hole pairs, minimized resistance of charge transfer, and increased excited-state charge carrier concentration, resulting in increased photocurrent. Typical results indicated that composite photoelectrodes delivered higher photocurrent (−1.75 mA/cm2 at 0 V vs RHE) and HC-STH conversion efficiency (0.42% at 0.49 V vs RHE) than those of CIS and CIS/CdS photoelectrodes. This improved PEC performance is accredited to the synergetic impact of CdS in charge generation and transfer and MoS2 as a cocatalyst with active surface sites for proton reduction. This study not only reveals the promising nature of CuInS2-based light absorber photocathodes for solar energy utilization but also recommends the use of MoS2 as a cocatalyst for the proton reduction reactions for widespread applications in solar to hydrogen conversion.
ISSN:0887-0624
1520-5029
DOI:10.1021/acs.energyfuels.2c03502