Defect-Free MoS2‑Flakes/Amorphous-Carbon Hybrid as an Advanced Anode for Lithium-Ion Batteries

Molybdenum disulfide (MoS2) is a promising alternative for the anode of Li-ion batteries because of its high theoretical capacity and layered structure for rapid ion transport. However, the issues of low electrical conductivity, high volume change, and complicated synthesis are limiting the practica...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy & fuels 2021-02, Vol.35 (4), p.3459-3468
Hauptverfasser: Dinh, Duc Anh, Nguyen, Tuan Loi, Cuong, Tran Viet, Hui, Kwan San, Bui, Trung Hieu, Wu, Shuxing, Hui, Kwun Nam
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Molybdenum disulfide (MoS2) is a promising alternative for the anode of Li-ion batteries because of its high theoretical capacity and layered structure for rapid ion transport. However, the issues of low electrical conductivity, high volume change, and complicated synthesis are limiting the practical application of MoS2 as the anode in Li-ion batteries. To overcome these issues, we propose the synthesis of MoS2 flakes/amorphous carbon hybrids (MoS2/C) for the application of the anode. The MoS2 flakes are obtained by liquid-phase exfoliation of bulk MoS2 in 2-propanol. Then, MoS2/C hybrids are produced by thermal decomposition of poly­(acrylic acid) coated on MoS2. The hybrids are tested as anode-active materials in a half-cell configuration. The electrochemical tests show that the electrode, with the optimized carbon content, exhibits a reversible specific capacity of ∼521 mAh g–1 at 100 mA g–1 after 100 cycles, with a coulombic efficiency approaching 100%. The remarkable performance of the MoS2/C hybrids is attributed to the carbon network acting as a buffer layer to alleviate the volume change of MoS2. This study demonstrates an approach to enhance the electrochemical performance of MoS2/C hybrids for Li+ storage applications.
ISSN:0887-0624
1520-5029
DOI:10.1021/acs.energyfuels.0c03896