(3-CF3pyH)2(3-CF3py)Pb3I8: A Three-Dimensional Metal Halide Inorganic Framework with Distinctive Kagomé Bands

The structural diversity inherent in hybrid organic–inorganic metal halides as a function of the organic cation template can give access to numerous semiconducting materials featuring distinct polyhedral connectivity patterns. Beyond the common corner-sharing pattern of halide perovskites, different...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemistry of materials 2024-12, Vol.36 (24), p.11804-11813
Hauptverfasser: Giappa, Rafaela Maria, Selivanov, Nikita I., Samsonova, Anna Yu, Pantousas, Apostolos, Remediakis, Ioannis N., Kapitonov, Yury V., Emeline, Alexei V., Kopidakis, Georgios, Stoumpos, Constantinos C.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The structural diversity inherent in hybrid organic–inorganic metal halides as a function of the organic cation template can give access to numerous semiconducting materials featuring distinct polyhedral connectivity patterns. Beyond the common corner-sharing pattern of halide perovskites, different motifs can be accessed via the use of bulky and asymmetric templates, which can break the corner-sharing pattern. In this work, we report on the synthesis and characterization of a novel three-dimensional hybrid metal halide network, (3-CF3pyH)2(3-CF3py)­Pb3I8, featuring a buckled decorated honeycomb lattice arising from the corner-connected arrangement of [Pb3I8]2– clusters. The compound is an indirect bandgap semiconductor with a bandgap of Eg = 2.6 eV that exhibits photoluminescence via a trap-assisted mechanism at 77 K. The inorganic cluster topology governs the electronic properties of the material, whereas the perovskite-like corner connectivity of the clusters gives rise to dispersive bands along certain crystallographic directions. The unprecedented appearance of distinctive Kagomé bands, emerging in the DFT calculated band structure of the idealized crystal structure, renders this material a promising candidate for advanced optoelectronic applications.
ISSN:0897-4756
1520-5002
DOI:10.1021/acs.chemmater.4c02076