Cell-Interactive Gelatin-Based 19F MRI Tracers: An In Vitro Proof-of-Concept Study

Cross-linked gelatin-based hydrogels are highly promising cell-interactive, biocompatible, and biodegradable materials serving tissue engineering. Moreover, gelatins with covalently bound methacrylamide (gel-MA) and 2-aminoethyl methacrylate moieties (gel-AEMA) can be cross-linked through ultraviole...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemistry of materials 2024-01, Vol.36 (1), p.183-196
Hauptverfasser: Kolouchova, Kristyna, Groborz, Ondrej, Herynek, Vit, Petrov, Oleg V., Lang, Jan, Dunlop, David, Parmentier, Laurens, Szabó, Anna, Schaubroeck, David, Adriaensens, Peter, Van Vlierberghe, Sandra
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Cross-linked gelatin-based hydrogels are highly promising cell-interactive, biocompatible, and biodegradable materials serving tissue engineering. Moreover, gelatins with covalently bound methacrylamide (gel-MA) and 2-aminoethyl methacrylate moieties (gel-AEMA) can be cross-linked through ultraviolet (UV) irradiation, which allows light-based three-dimensional (3D)-printing of such hydrogels. Furthermore, the physicochemical and biological properties of these hydrogels can be broadly tuned by incorporating various comonomers into the polymer chains, which makes these hydrogels a widely applicable platform in tissue engineering and reconstructive surgery. However, monitoring the degradation rate of hydrogel-based implants in vivo is challenging, thereby prohibiting their broad clinical transition and further research. Therefore, herein, we describe the synthesis of 3D-printable gelatin-based hydrogels with N-(2,2-difluoroethyl)­acrylamide (DFEA), detectable with the chemical shift of −123 ppm, which enables us to monitor these implants in vivo with 19F magnetic resonance imaging (MRI) and assess their degradation kinetics. Next, we describe the physicochemical and biological properties of these hydrogels. Adding DFEA monomers into the reaction mixture accelerates their cross-linking kinetics. Moreover, increasing the DFEA content within the hydrogels increases their swelling ratio and 19F MRI signal. All hydrogels were detectable at small quantities (
ISSN:0897-4756
1520-5002
DOI:10.1021/acs.chemmater.3c01574