A‑Site and B‑Site Cation Ordering Induces Polar and Multiferroic Behavior in the Perovskite NaLnNiWO6 (Ln = Y, Dy, Ho, and Yb)

Octahedral distortion in ABO3 perovskite materials is ubiquitous because of the ionic size mismatch between A and B cations, leading to various kinds of crystal symmetry. However, such a distortion always results in centrosymmetric structures except for the covalent bond formation because of the sec...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemistry of materials 2020-07, Vol.32 (13), p.5641-5649
Hauptverfasser: Shankar P N, Ravi, Orlandi, Fabio, Manuel, Pascal, Zhang, Weiguo, Halasyamani, P. Shiv, Sundaresan, Athinarayanan
Format: Artikel
Sprache:eng ; jpn
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Octahedral distortion in ABO3 perovskite materials is ubiquitous because of the ionic size mismatch between A and B cations, leading to various kinds of crystal symmetry. However, such a distortion always results in centrosymmetric structures except for the covalent bond formation because of the second-order Jahn–Teller (SOJT) effect that occurs with d0 or lone-pair cations. Here, we report that an unusual combination of the layered A-site cation ordering and B-site rock salt ordering in NaYNiWO6 prepared under high-pressure and high-temperature conditions results not only in a polar (P21) structure, as revealed by the neutron diffraction analysis, but exhibits multiferroic properties below the magnetic ordering of Ni2+ ions (T N = 21 K). Analysis of the neutron diffraction data at 20 K reveals an incommensurate sinusoidal spin ordering with the propagation vector, k i = (0.471(2), 0, 0.491(4)), and a commensurate collinear spin structure with k c = (0.5, 0, 0.5) below 18 K. X-ray diffraction data confirm the polar structure in Dy, Ho, and Yb compounds. All four compounds exhibit a switchable change in electric polarization (ΔP) at the magnetic ordering temperatures, demonstrating coupling between ferroelectricity and magnetism.
ISSN:0897-4756
1520-5002
DOI:10.1021/acs.chemmater.0c01149