Improved Ordering of Quasi-Two-Dimensional MoS2 via an Amorphous-to-Crystal Transition Initiated from Amorphous Sulfur-Rich MoS2+x

The synthesis of stoichiometric two-dimensional (2D) transition-metal dichalcogenides (TMDC) over large areas remains challenging. Using a combination of X-ray diffraction and X-ray absorption spectroscopy, we demonstrate the advantages of using a thin amorphous layer of S-rich MoS2 (MoS4 in this pa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Crystal growth & design 2022-05, Vol.22 (5), p.3072-3079
Hauptverfasser: Krbal, Milos, Prokop, Vit, Prikryl, Jan, Pereira, Jhonatan Rodriguez, Pis, Igor, Kolobov, Alexander V, Fons, Paul J, Saito, Yuta, Hatayama, Shogo, Sutou, Yuji
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The synthesis of stoichiometric two-dimensional (2D) transition-metal dichalcogenides (TMDC) over large areas remains challenging. Using a combination of X-ray diffraction and X-ray absorption spectroscopy, we demonstrate the advantages of using a thin amorphous layer of S-rich MoS2 (MoS4 in this paper) for the growth of well-ordered crystalline MoS2 films via annealing at 900 °C. In contrast to the crystallization of stoichiometric amorphous MoS2, the crystallization of the as-deposited amorphous MoS4 phase shows the strong preferred ordering of layered MoS2 on a Si/SiO x nontemplating substrate with the dominant (002) crystallographic plane and accompanying Kiessig fringes, which indicate the improved crystallinity of the MoS2 layers. A similar effect can only be achieved by the templated crystallization of an amorphous MoS2 thin film deposited on a c-plane sapphire substrate. We suggest that the crystal growth improvement originates from the lower coordination number (CN) of the Mo atoms in the MoS4 amorphous phase (CN = 4) in comparison with that of amorphous MoS2 (CN = 6) and the gradual release of free sulfur atoms from the thin film during crystallization.
ISSN:1528-7483
1528-7505
DOI:10.1021/acs.cgd.1c01504