Towards Truly Adaptive Byzantine Fault-Tolerant Consensus

To acheive maximum performance, Byzantine fault-tolerant (BFT) systems must be manually tuned when hardware, network, or workload properties change. This paper presents our vision for a reinforcement learning (RL) based Byzantine fault-tolerant (BFT) system that adjusts effectively in realtime to ch...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Operating systems review 2024-08, Vol.58 (1), p.15-22
Hauptverfasser: Wu, Chenyuan, Qin, Haoyun, Javad Amiri, Mohammad, Thau Loo, Boon, Malkhi, Dahlia, Marcus, Ryan
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:To acheive maximum performance, Byzantine fault-tolerant (BFT) systems must be manually tuned when hardware, network, or workload properties change. This paper presents our vision for a reinforcement learning (RL) based Byzantine fault-tolerant (BFT) system that adjusts effectively in realtime to changing fault scenarios and workloads. We identify several variables that can impact the performance of a BFT protocol, and show how these variables can serve as features in an RL engine in order to choose the context-dependent bestperforming BFT protocol in real-time. We further outline a decentralized RL approach capable of tolerating adversarial data pollution, where nodes share local metering values and reach the same learning output by consensus.
ISSN:0163-5980
DOI:10.1145/3689051.3689055