Towards Truly Adaptive Byzantine Fault-Tolerant Consensus
To acheive maximum performance, Byzantine fault-tolerant (BFT) systems must be manually tuned when hardware, network, or workload properties change. This paper presents our vision for a reinforcement learning (RL) based Byzantine fault-tolerant (BFT) system that adjusts effectively in realtime to ch...
Gespeichert in:
Veröffentlicht in: | Operating systems review 2024-08, Vol.58 (1), p.15-22 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | To acheive maximum performance, Byzantine fault-tolerant (BFT) systems must be manually tuned when hardware, network, or workload properties change. This paper presents our vision for a reinforcement learning (RL) based Byzantine fault-tolerant (BFT) system that adjusts effectively in realtime to changing fault scenarios and workloads. We identify several variables that can impact the performance of a BFT protocol, and show how these variables can serve as features in an RL engine in order to choose the context-dependent bestperforming BFT protocol in real-time. We further outline a decentralized RL approach capable of tolerating adversarial data pollution, where nodes share local metering values and reach the same learning output by consensus. |
---|---|
ISSN: | 0163-5980 |
DOI: | 10.1145/3689051.3689055 |