Oxidizing OCaml with Modal Memory Management
Programmers can often improve the performance of their programs by reducing heap allocations: either by allocating on the stack or reusing existing memory in-place. However, without safety guarantees, these optimizations can easily lead to use-after-free errors and even type unsoundness. In this pap...
Gespeichert in:
Veröffentlicht in: | Proceedings of ACM on programming languages 2024-08, Vol.8 (ICFP), p.485-514, Article 253 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Programmers can often improve the performance of their programs by reducing heap allocations: either by allocating on the stack or reusing existing memory in-place. However, without safety guarantees, these optimizations can easily lead to use-after-free errors and even type unsoundness. In this paper, we present a design based on modes which allows programmers to safely reduce allocations by using stack allocation and in-place updates of immutable structures. We focus on three mode axes: affinity, uniqueness and locality. Modes are fully backwards compatible with existing OCaml code and can be completely inferred. Our work makes manual memory management in OCaml safe and convenient and charts a path towards bringing the benefits of Rust to OCaml. |
---|---|
ISSN: | 2475-1421 |
DOI: | 10.1145/3674642 |