Software feature model recommendations using data mining

Feature Models are popular tools for describing software product lines. Analysis of feature models has traditionally focused on consistency checking (yielding a yes/no answer) and product selection assistance, interactive or offline. In this paper, we describe a novel approach to identify the most c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Sayyad, Abdel Salam, Ammar, Hany, Menzies, Tim
Format: Tagungsbericht
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Feature Models are popular tools for describing software product lines. Analysis of feature models has traditionally focused on consistency checking (yielding a yes/no answer) and product selection assistance, interactive or offline. In this paper, we describe a novel approach to identify the most critical decisions in product selection/configuration by taking advantage of a large pool of randomly generated, generally inconsistent, product variants. Range Ranking, a data mining technique, is utilized to single out the most critical design choices, reducing the job of the human designer to making less consequential decisions. A large feature model is used as a case study; we show preliminary results of the new approach to illustrate its usefulness for practical product derivation.
DOI:10.5555/2666719.2666730