Exploring the performance of resampling strategies for the class imbalance problem

The present paper studies the influence of two distinct factors on the performance of some resampling strategies for handling imbalanced data sets. In particular, we focus on the nature of the classifier used, along with the ratio between minority and majority classes. Experiments using eight differ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: García, Vicente, Sánchez, José Salvador, Mollineda, Ramón A.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The present paper studies the influence of two distinct factors on the performance of some resampling strategies for handling imbalanced data sets. In particular, we focus on the nature of the classifier used, along with the ratio between minority and majority classes. Experiments using eight different classifiers show that the most significant differences are for data sets with low or moderate imbalance: over-sampling clearly appears as better than under-sampling for local classifiers, whereas some under-sampling strategies outperform oversampling when employing classifiers with global learning.
DOI:10.5555/1945758.1945822