Prefetching based on web usage mining

This paper introduces a new technique for prefetching web content by learning the access patterns of individual users. The prediction scheme for prefetching is based on a learning algorithm, called Fuzzy-LZ, which mines the history of user access and identifies patterns of recurring accesses. This a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Sow, Daby M., Olshefski, David P., Beigi, Mandis, Banavar, Guruduth
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper introduces a new technique for prefetching web content by learning the access patterns of individual users. The prediction scheme for prefetching is based on a learning algorithm, called Fuzzy-LZ, which mines the history of user access and identifies patterns of recurring accesses. This algorithm is evaluated analytically via a metric called learnability and validated experimentally by correlating learnability with prediction accuracy. A web prefetching system that incorporates Fuzzy-LZ is described and evaluated. Our experiments demonstrate that Fuzzy-LZ prefetching provides a gain of 41.5 % in cache hit rate over pure caching. This gain is highest for those users who are neither highly predictable nor highly random, which turns out to be the vast majority of users in our workload. The overhead of our prefetching technique for a typical user is 2.4 prefetched pages per user request.
ISSN:0302-9743
1611-3349
DOI:10.5555/1515915.1515934