Battery-conscious task sequencing for portable devices including voltage/clock scaling
Operation of battery-powered portable systems can no longer be sustained once a battery becomes discharged. Maximization of the battery lifetime is a difficult task due to nonlinearity of battery behavior that depends on the characteristics of the system load profile. We address the problem of task...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Operation of battery-powered portable systems can no longer be sustained once a battery becomes discharged. Maximization of the battery lifetime is a difficult task due to nonlinearity of battery behavior that depends on the characteristics of the system load profile. We address the problem of task sequencing without and with voltage/clock scaling that shapes the profile so that the battery lifetime is maximized. We developed an accurate analytical battery model and validated it with measurements taken on a real lithium-ion battery used in a pocket computer. We use the model as a basis for a unique battery conscious cost function and utilize its properties to develop several novel algorithms, including insertion of recovery periods and voltage/clock scaling for delay slack distribution. |
---|---|
ISSN: | 0738-100X |
DOI: | 10.1145/513918.513967 |