Stochastic response-time guarantee for non-preemptive, fixed-priority scheduling under errors
Error recovery mechanisms, such as automatic repeat request (ARQ) for e.g. the CAN protocol, are a crucial part of safety critical embedded systems. These can have a strong impact on the timing behavior of the system and an unpropitious combination of error events may cause a real-time application t...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Error recovery mechanisms, such as automatic repeat request (ARQ) for e.g. the CAN protocol, are a crucial part of safety critical embedded systems. These can have a strong impact on the timing behavior of the system and an unpropitious combination of error events may cause a real-time application to miss deadlines with potentially hazardous consequences. Therefore, formal analysis of the worst-case timing including errors is indispensable for certification. We present a new convolution-based stochastic analysis in which we model errors as additional execution time to bound the probability for an activation to exceed a response-time value in the worst-case. |
---|---|
ISSN: | 0738-100X |
DOI: | 10.1145/2463209.2488946 |