Hardware Trojan horse detection using gate-level characterization

Hardware Trojan horses (HTHs) are the malicious altering of hardware specification or implementation in such a way that its functionality is altered under a set of conditions defined by the attacker. There are numerous HTHs sources including untrusted foundries, synthesis tools and libraries, testin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Potkonjak, Miodrag, Nahapetian, Ani, Nelson, Michael, Massey, Tammara
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Hardware Trojan horses (HTHs) are the malicious altering of hardware specification or implementation in such a way that its functionality is altered under a set of conditions defined by the attacker. There are numerous HTHs sources including untrusted foundries, synthesis tools and libraries, testing and verification tools, and configuration scripts. HTH attacks can greatly comprise security and privacy of hardware users either directly or through interaction with pertinent systems and application software or with data. However, while there has been a huge research and development effort for detecting software Trojan horses, surprisingly, HTHs are rarely addressed. HTH detection is a particularly difficult task in modern and pending deep submicron technologies due to intrinsic manufacturing variability. Our goal is to provide an impetus for HTH research by creating a generic and easily applicable set of techniques and tools for HTH detection. We start by introducing a technique for recovery of characteristics of gates in terms of leakage current, switching power, and delay, which utilizes linear programming to solve a system of equations created using non-destructive measurements of power or delays. This technique is combined with constraint manipulation techniques to detect embedded HTHs. The effectiveness of the approach is demonstrated on a number of standard benchmarks.
ISSN:0738-100X
DOI:10.1145/1629911.1630091