Long Tail Recommender Utilizing Information Diffusion Theory

Our approach aims to provide a mechanism for recommending long tail items to knowledge workers. The approach employs collaborative filtering using browsing features of identified key population of the diffusion of information. We conducted analytic experiment for a novel recommendation algorithm bas...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Ishikawa, Masayuki, Geczy, Peter, Izumi, Noriaki, Yamaguchi, Takahira
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Our approach aims to provide a mechanism for recommending long tail items to knowledge workers. The approach employs collaborative filtering using browsing features of identified key population of the diffusion of information. We conducted analytic experiment for a novel recommendation algorithm based on the browsing features of identified selected users and discovered that the first 10 users accessing a particular page play the key role in information spread. The evaluation indicated that our approach is effective for long tail recommendation.
DOI:10.1109/WIIAT.2008.352