A quantitative method for revealing and comparing places in the home
Increasing availability of sensor-based location traces for individuals, combined with the goal of better understanding user context, has resulted in a recent emphasis on algorithms for automatically extracting users' significant places from location data. Place-finding can be characterized by...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Increasing availability of sensor-based location traces for individuals, combined with the goal of better understanding user context, has resulted in a recent emphasis on algorithms for automatically extracting users' significant places from location data. Place-finding can be characterized by two sub-problems, (1) finding significant locations, and (2) assigning semantic labels to those locations (the problem of “moving from location to place”) [8]. Existing algorithms focus on the first sub-problem and on finding city-level locations. We use a principled approach in adapting Gaussian Mixture Models (GMMs) to provide a first solution for finding significant places within the home, based on the first set of long-term, precise location data collected from several homes. We also present a novel metric for quantifying the similarity between places, which has the potential to assign semantic labels to places by comparing them to a library of known places. We discuss several implications of these new techniques for the design of Ubicomp systems. |
---|---|
ISSN: | 0302-9743 1611-3349 |
DOI: | 10.1007/11853565_1 |