Modèle des fronts de photoevaporation dans les régions de formation d'étoiles
Les conditions de formation des étoiles est un sujet central en astrophysique. Le taux de formation stellaire (SFR) est relié à la masse de gaz moléculaire par la relation de Schmidt-Kennicutt. Une étoile modifie son nuage parent grâce aux vents, jets et à son rayonnement, balayant son environnement...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Dissertation |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Les conditions de formation des étoiles est un sujet central en astrophysique. Le taux de formation stellaire (SFR) est relié à la masse de gaz moléculaire par la relation de Schmidt-Kennicutt. Une étoile modifie son nuage parent grâce aux vents, jets et à son rayonnement, balayant son environnement, détruisant des sites de formation d’étoiles, mais pouvant aussi en compresser et déstabiliser, déclenchant la formation de nouvelles étoiles. Ma thèse s’est concentrée sur la rétroaction radiative, largement dominée par celle des étoiles massives. Cela crée une région ionisée en expansion au plus près de l’étoile, suivie d’une région où l’hydrogène moléculaire est dissocié (photodissociation region en anglais, ou PDR), trop chaude pour former des étoiles. De nombreux modèles physico-chimiques des PDRs cherchent un état stationnaire, négligeant la dynamique du gaz. Des observations Herschel en CO excité et ALMA (Atacama Large Millimeter Array) en CH+ et SH+ ont changé la vision stationnaire de la structure des PDRs en soulignant le rôle de la dynamique du gaz. Le bord des nuages se trouve être à haute pression, fortement corrélée à l’intensité du champ UV incident. Le mécanisme de photo-évaporation peut reproduire ces caractéristiques: avec l’évaporation à haute vitesse du gaz chaud ionisé, l’effet fusée fait se propager une onde de pression dans le nuage, expliquant les hautes pressions observées. Par l’érosion du nuage, la frontière avec le milieu ionisé, le front d’ionisation (IF), avance dans le milieu neutre. Les modèles PDRs tant numériques que théoriques doivent être mis à jour pour prendre en compte cette propagation de l’IF. Nous avons d’abord construit un modèle semi-analytique de la transition entre le gaz atomique et moléculaire (H/H2) tenant compte de l’avancement de l’IF. Nous avons montré que la largeur de la région atomique est réduite comparé à des modèles statiques. Elle peut même disparaître si la vitesse de l’IF dépasse une valeur seuil, menant à la fusion de l’IF et de la transition H/H2. Nous avons trouvé des formules pour estimer ce seuil ainsi que la colonne densité totale de H atomique. En comparant notre théorie avec des observations de PDRs, nous avons montré que les effets de la dynamique sont forts, en particulier pour les PDRs faiblement illuminées comme la nébuleuse de la Tête de Cheval. En préparation des observations JWST de H2, nous avons implémenté le calcul des populations des niveaux de H2 dans le code Hydra, un code hydro-d |
---|