Conception et intégration d'un convertisseur analogique-paramètres flexible pour les capteurs intelligents

Avec le fort développement de l'Internet des Objets (IoT), il devient nécessaire de converger vers de nouveaux capteurs dit intelligents. Ces capteurs doivent permettre d'analyser l'environnement extérieur, comprendre le contexte dans lequel ils sont utilisés et être conscient des bes...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Back, Antoine
Format: Dissertation
Sprache:fre
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Avec le fort développement de l'Internet des Objets (IoT), il devient nécessaire de converger vers de nouveaux capteurs dit intelligents. Ces capteurs doivent permettre d'analyser l'environnement extérieur, comprendre le contexte dans lequel ils sont utilisés et être conscient des besoins utilisateurs. Ils doivent cependant rester petits, fiables, bon marché et avoir une autonomie de plusieurs années. La conversion analogique-paramètre (Analog-to-Feature, A2F) est une nouvelle méthode d'acquisition pensée pour les appareils IoT, et semble être une solution adaptée pour de tels capteurs. Cette conversion consiste à extraire des paramètres directement sur le signal analogique. Une sélection pertinente des paramètres permet d'extraire uniquement l'information nécessaire à une tache particulière. Le convertisseur proposé est basé sur la technique de l'échantillonnage non-uniforme en ondelettes (NUWS). L'architecture mélange le signal analogique avec des ondelettes paramétrables avant d'intégrer et convertir le signal en données numériques. L'objectif de la thèse est de proposer une méthode pour concevoir un convertisseur A2F générique basé sur le NUWS. Il est ainsi nécessaire de définir les caractéristiques des ondelettes afin d'acquérir une large gamme de signaux basse fréquence (ECG, EMG, EEG, parole…). Cette étape nécessite l'utilisation d'algorithmes de sélection de paramètres et d'algorithmes d'apprentissage automatique pour sélectionner le meilleur ensemble d'ondelettes pour une application donnée et qui doit permettre de définir les spécifications du convertisseur. L'étape de sélection des paramètres doit tenir compte des contraintes de mise en œuvre pour optimiser au mieux la consommation d'énergie. Un algorithme de sélection de paramètres est proposé pour choisir des ondelettes pour une application donnée, afin de maximiser la précision de classification tout en diminuant la consommation d'énergie, grâce à un modèle de consommation réalisé dans une technologie CMOS 0.18μm. The Internet of Things (IoT) is currently experiencing huge developments. IoT includes lots of different devices such as Wireless Sensors Networks (WSN) or wearable electronics that rely on wireless communications. These networks need to understand the context in which they are used. This mean that the system must know what is happening around it, i.e. sense the environment, and understands the needs of the user. This requires always-on sensing on many sensors while being small, che