Développement et application d’une méthode à haute résolution angulaire pour la mesure des gradients d’orientation et des déformations élastiques par microscopie électronique à balayage
La compréhension des mécanismes de déformation dans les matériaux cristallins passe par la caractérisation fine des microstructures. Dans le cadre de la microscopie électronique à balayage, la mesure précise des gradients d’orientation et des déformations élastiques du cristal est l’objectif des mét...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Dissertation |
Sprache: | fre |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | La compréhension des mécanismes de déformation dans les matériaux cristallins passe par la caractérisation fine des microstructures. Dans le cadre de la microscopie électronique à balayage, la mesure précise des gradients d’orientation et des déformations élastiques du cristal est l’objectif des méthodes dites à haute résolution angulaire. Pour cela, elles emploient des techniques de corrélation d’images numériques afin de recaler les clichés de diffraction électronique. Cette thèse propose une méthode de recalage originale. Le champ de déplacement à l’échelle du scintillateur est décrit par une homographie linéaire. Il s’agit d’une transformation géométrique largement utilisée en vision par ordinateur pour modéliser les projections. L’homographie entre deux clichés est mesurée à partir d’une grande et unique région d’intérêt en utilisant un algorithme de Gauss-Newton par composition inverse numériquement efficace. Une correction des distorsions optiques causées par les lentilles de la caméra lui est intégrée et sa convergence est assurée par un pré-recalage des clichés. Ce dernier repose sur des algorithmes de corrélation croisée globale basés sur les transformées de Fourier-Mellin et de Fourier. Il permet de rendre compte des rotations allant jusqu’à une dizaine de degrés avec une précision comprise typiquement entre 0,1 et 0,5°. La détermination de l’homographie est indépendante de la géométrie de projection. Cette dernière n’est considérée qu’à l’issue du recalage pour déduire analytiquement les rotations et les déformations élastiques. La méthode est validée numériquement sur des clichés simulés distordus optiquement, désorientés jusqu’à 14° et présentant des déformations élastiques équivalentes jusqu’à 5×10⁻². Cette étude montre que la mesure précise de déformations élastiques comprises entre 1×10⁻⁴ et 2×10⁻³ nécessite de corriger la distorsion optique radiale, même lorsque la désorientation est faible. Finalement, la méthode est appliquée à des clichés acquis par diffraction des électrons rétrodiffusés (EBSD) et en transmission en utilisant la nouvelle configuration TKD on-axis (transmission Kikuchi diffraction). Des métaux polycristallins déformés plastiquement ainsi que des semi-conducteurs sont caractérisés. La méthode retranscrit des détails fins de la microstructure d’un acier martensitique trempé et revenu et d’un acier sans interstitiels déformé de 15% en traction, malgré la détérioration du contraste de diffraction induit par la déformation |
---|