Stabilisation rapide d'équations de Burgers et de Korteweg-de Vries

Cette thèse est consacrée à l'étude de la stabilisation d'équations aux dérivées partielles par feedbacks non linéaires. Nous nous intéressons aux cas où la technique de linéarisation et l'utilisation de feedback stationnaire ne fonctionnent pas pour des problèmes de stabilisation, pa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Xiang, Shengquan
Format: Dissertation
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Cette thèse est consacrée à l'étude de la stabilisation d'équations aux dérivées partielles par feedbacks non linéaires. Nous nous intéressons aux cas où la technique de linéarisation et l'utilisation de feedback stationnaire ne fonctionnent pas pour des problèmes de stabilisation, par exemple des équations de Korteweg-de Vries (KdV) et des équations de Burgers. Plus précisément, nous traitons trois cas importants : la stabilisation de systèmes non linéaires dont les systèmes linéarisés ne sont pas stabilisables asymptotiquement ; la stabilisation locale en temps petit de systèmes contrôlables linéaires ; la stabilisation globale en temps petit de systèmes contrôlables non linéaires. En particulier, nous trouvons une stratégie pour la stabilisation globale en temps petit de l'équation de Burgers visqueuse. Elle repose sur la stabilisation globale approchée en temps petit et sur la stabilisation locale en temps petit. De plus, nous prouvons que le système de KdV même pour des longueurs critiques est stabilisable de manière exponentielle. Nous utilisons pour cela une structure quadratique de la dynamique de la partie dont le linéarisé n'est pas contrôlable. This thesis is devoted to the study of stabilization of partial differential equations by nonlinear feedbacks. We are interested in the cases where classical linearization and stationary feedback law do not work for stabilization problems, for example KdV equations and Burgers equations. More precisely, it includes three important cases : stabilization of nonlinear systems whose linearized systems are not asymptotically stabilizable ; small-time local stabilization of linear controllable systems ; small-time global stabilization of nonlinear controllable systems. We find a strategy for the small-time global stabilization of the viscous Burgers equation : small-time global approximate stabilization and small-time local stabilization. Moreover, using a quadratic structure, we prove that the KdV system is exponentially stabilizable even in the case of critical lengths.