Cohomologie des fibrés en droites sur SL3/B en caractéristique positive : deux filtrations et conséquences

Soit G un groupe algébrique semi-simple sur un corps k algébriquement clos de caractéristique positive et soit B un sous-groupe de Borel. La cohomologie des fibrés en droites G-équivariants sur G/B induits par des caractères de B sont des objets importants dans la théorie des représentations de G. D...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Liu, Linyuan
Format: Dissertation
Sprache:fre
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Soit G un groupe algébrique semi-simple sur un corps k algébriquement clos de caractéristique positive et soit B un sous-groupe de Borel. La cohomologie des fibrés en droites G-équivariants sur G/B induits par des caractères de B sont des objets importants dans la théorie des représentations de G. Dans cette thèse, on se concentre sur G = SL3. Dans le premier chapitre,on montre l’existence d’une filtration à deux étages de H1(μ) et H2(μ) pour μ dans l’adhérence de la région de Griffith. Dans le deuxième chapitre, on montre l’existence d’une p-Hi-D-filtration de Hi(μ) pour tout i et μ, qui généralise la p filtration de H0(μ) introduite par Jantzen. Dans le troisième chapitre, on étudie et détermine la structure des modules apparaissants dans la p-Hi-D-filtration.Dans le dernier chapitre, on donne une description explicite et combinatoire de H2(μ) pour μ dans la région de Griffith et on généralise cette description à Hd(G/B, μ) pour G = SLd+1 et certains poids μ. Let G be a semi-simple algebraic group over an algebraically closed field of positive characteristic. The cohomology of G-equivariant line bundles over G/B induced by a character of B are important objects in the representation theory of G. In this thesis, we concentrate on G = SL3. In the first chapter,we prove the existence of a two-step filtration of H1(μ) and H2(μ) when μ is in the closure of the Griffith region. In the second chapter, we prove the existence ofa p-Hi-D-filtration of Hi(μ) for all i and μ, which generalizes the p-filtration ofH0(μ) introduced by Jantzen. In the third chapter, we study and determine the structure of the modules appearing in the p-Hi-D-filtration. In the last chapter,we give an explicit and combinatorial description of H2(μ) for μ in the Griffith region and we generalize this description to Hd(G/B, μ) for G = SLd+1 and certain weights μ.