Stéréotomie et vision artificielle pour la construction robotisée de structures maçonnées complexes

Ce travail de thèse s'inscrit dans le contexte du développement de la robotique dans la construction. On s’intéresse ici à la construction robotisée de structures maçonnées complexes en ayant recours à de la vision artificielle. La construction sans cintre étant un enjeu important en ce qui con...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Loing, Vianney
Format: Dissertation
Sprache:fre
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Ce travail de thèse s'inscrit dans le contexte du développement de la robotique dans la construction. On s’intéresse ici à la construction robotisée de structures maçonnées complexes en ayant recours à de la vision artificielle. La construction sans cintre étant un enjeu important en ce qui concerne la productivité sur un chantier et la quantité de déchets produits, nous explorons, à cet effet, les possibilités qu'offre la rigidité en flexion inhérente aux maçonneries topologiquement autobloquantes. La génération de ces dernières, classique dans le cas plan, est généralisée ici à la conception de structures courbes, à partir de maillages de quadrangles plans et de manière paramétrique, grâce aux logiciels Rhinoceros 3D / Grasshopper. Pour cela, nous proposons un ensemble d'inégalités à respecter afin que la structure obtenue soit effectivement topologiquement autobloquante. Ces inégalités permettent, par ailleurs, d'introduire un résultat nouveau ; à savoir qu'il est possible d'avoir un assemblage de blocs dans lequel chacun des blocs est topologiquement bloqué en translation, mais un sous-ensemble — constitué de plusieurs de ces blocs — ne l'est pas. Un prototype de maçonnerie à topologie autobloquante est finalement conçu. Sa conception repose sur une découpe des joints d'inclinaison variable qui permet de le construire sans cintre. En parallèle, nous abordons des aspects de vision artificielle robuste pour un environnement chantier, environnement complexe dans lequel les capteurs peuvent subir des chocs, être salis ou déplacés accidentellement. Le problème est d'estimer la position relative d'un bloc de maçonnerie par rapport à un bras robot, à partir de simples caméras 2D ne nécessitant pas d'étape de calibration. Notre approche repose sur l'utilisation de réseaux de neurones convolutifs de classification, entraînés à partir de centaines de milliers d'images synthétiques de l’ensemble bras robot + bloc, présentant des variations aléatoires en terme de dimensions et positions du bloc, textures, éclairage, etc, et ce afin que le robot puisse apprendre à repérer le bloc sans trop de biais d’environnement. La génération de ces images est réalisée grâce à Unreal Engine 4. Cette méthode permet la localisation du bloc par rapport au robot avec une précision millimétrique, sans utiliser une seule image réelle pour la phase d'apprentissage ; ce qui constitue un avantage certain puisque l'acquisition de données représentatives pour l'apprentissage est un process