Maintenance automatique du réseau programmable d'accès optique de très haut débit
Les réseaux optiques passifs (PONs, Passive Optical Networks) représentant l’une des solutions les plus performantes du réseau d’accès FTTH ont été largement déployés par les opérateurs grâce à leur capacité d’offrir des services de très haut débit. Cependant, en raison de la dynamicité du trafic de...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Dissertation |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Les réseaux optiques passifs (PONs, Passive Optical Networks) représentant l’une des solutions les plus performantes du réseau d’accès FTTH ont été largement déployés par les opérateurs grâce à leur capacité d’offrir des services de très haut débit. Cependant, en raison de la dynamicité du trafic des différents clients, ces réseaux doivent s’appuyer sur un mécanisme efficace pour l’allocation de ressources, plus particulièrement dans le sens montant. Ce mécanisme est actuellement limité par la nature statique des paramètres SLA (Service Level Agreement). Ceci peut avoir une influence négative sur la qualité de service ressentie par les utilisateurs. L’objectif de cette thèse est de proposer une nouvelle architecture pour optimiser l’allocation de ressources dans les réseaux PON tout en agissant uniquement sur les paramètres SLA, désignés comme des paramètres gérables par l’opérateur. Des techniques de classification basées sur l’apprentissage automatique et la prédiction sont utilisées pour analyser le comportement des différents utilisateurs et déterminer leurs tendances de trafic. Un ajustement dynamique sur la base du concept autonomique de certains paramètres SLA est ensuite effectué afin de maximiser la satisfaction globale des clients vis-à-vis du réseau.
Passive Optical Network (PON) representing one of the most attractive FTTH access network solutions, have been widely deployed for several years thanks to their ability to offer high speed services. However, due to the dynamicity of users traffic patterns, PONs need to rely on an efficient upstream bandwidth allocation mechanism. This mechanism is currently limited by the static nature of Service Level Agreement (SLA) parameters which can lead to an unoptimized bandwidth allocation in the network. The objective of this thesis is to propose a new management architecture for optimizing the upstream bandwidth allocation in PON while acting only on manageable parameters to allow the involvement of self-decision elements into the network. To achieve this, classification techniques based on machine learning approaches are used to analyze the behavior of PON users and to specify their upstream data transmission tendency. A dynamic adjustment of some SLA parameters is then performed to maximize the overall customers’ satisfaction with the network. |
---|