Construction d’un châssis bactérien viable, minimal et non pathogène grâce aux outils de biologie de synthèse
Un des objectifs de la biologie de synthèse est de concevoir et produire des organismes « à façon », pour des applications thérapeutiques et industrielles. Une des voies envisagées pour atteindre cet objectif repose sur des techniques de synthèse et de transplantation de génomes entiers, afin de cré...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Dissertation |
Sprache: | fre |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Un des objectifs de la biologie de synthèse est de concevoir et produire des organismes « à façon », pour des applications thérapeutiques et industrielles. Une des voies envisagées pour atteindre cet objectif repose sur des techniques de synthèse et de transplantation de génomes entiers, afin de créer des organismes mutants.Le but de cette thèse est de développer des outils de biologie de synthèse qui permettront de construire une cellule minimale et non pathogène, à partir de Mycoplasma pneumoniae. Cette bactérie est l'un des plus petits organismes vivants, avec une taille inférieure au micron et un génome de 816 kpb. Ce mycoplasme est l’un des plus étudiés, avec une collection de données génétiques et multi-« omiques » disponibles. Ces caractéristiques font de cette cellule naturellement « quasi minimale » un point de départ idéal pour la construction d’un châssis bactérien. Néanmoins, la manipulation génétique de ce mycoplasme est difficile, en raison du nombre restreint d'outils disponibles.Une approche récemment développée propose de contourner ces limitations en utilisant la levure Saccharomyces cerevisiae comme plateforme d’ingénierie du génome de M. pneumoniae. L’étape préliminaire à cette approche consiste à cloner le génome bactérien dans la levure. Pour ce faire, une cassette « éléments levure » est insérée dans le génome de M. pneumoniae, pour permettre son maintien comme chromosome artificiel. Les travaux menés au cours de cette thèse ont permis d’insérer cette cassette par le biais d’un transposon, et de cloner ce génome marqué dans la levure. La stabilité du génome cloné a ensuite été étudiée, mettant en évidence que le chromosome bactérien est maintenu durant une dizaine de passages. Nous avons ensuite développé une nouvelle stratégie d’insertion des « éléments levure » en utilisant le système CRISPR/Cas9 pour cloner et éditer simultanément un génome de mycoplasme chez la levure : le CReasPy-Cloning. Cette méthode a été utilisée pour supprimer trois loci différents contenant des gènes impliqués dans la virulence : MPN372 (toxine CARDS), MPN142 (protéine de cytoadhérence) et MPN400 (protéine bloquant les IgG). Elle a ensuite été utilisée pour en cibler deux puis trois en une seule étape.Une fois le clonage et l’ingénierie du génome bactérien réalisés dans la levure, il est nécessaire de pouvoir transférer le chromosome modifié dans une cellule receveuse, afin de produire une cellule mutante. Ce processus nommé transplantation de génome n’éta |
---|