Méthodes adaptatives d'apprentissage pour des interfaces cerveau-ordinateur basées sur les potentiels évoqués
Les interfaces cerveau machine (BCI pour Brain Computer Interfaces) non invasives permettent à leur utilisateur de contrôler une machine par la pensée. Ce dernier doit porter un dispositif d'acquisition de signaux électroencéphalographiques (EEG), qui sont dotés d'un rapport signal sur bru...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Dissertation |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Les interfaces cerveau machine (BCI pour Brain Computer Interfaces) non invasives permettent à leur utilisateur de contrôler une machine par la pensée. Ce dernier doit porter un dispositif d'acquisition de signaux électroencéphalographiques (EEG), qui sont dotés d'un rapport signal sur bruit assez faible ; à ceci s'ajoute l’importante variabilité tant à travers les sessions d'utilisation qu’à travers les utilisateurs. Par conséquent, la calibration du BCI est souvent nécessaire avant son utilisation. Cette thèse étudie les sources de cette variabilité, dans le but d'explorer, concevoir, et implémenter des méthodes d'autocalibration. Nous étudions la variabilité des potentiels évoqués, particulièrement une composante tardive appelée P300. Nous nous penchons sur trois méthodes d’apprentissage par transfert : la Géométrie Riemannienne, le Transport Optimal, et l’apprentissage ensembliste. Nous proposons un modèle de l'EEG qui tient compte de la variabilité. Les paramètres résultants de nos analyses nous servent à calibrer ce modèle et à simuler une base de données, qui nous sert à évaluer la performance des méthodes d’apprentissage par transfert. Puis ces méthodes sont combinées et appliquées à des données expérimentales. Nous proposons une méthode de classification basée sur le Transport Optimal dont nous évaluons la performance. Ensuite, nous introduisons un marqueur de séparabilité qui nous permet de combiner Géométrie Riemannienne, Transport Optimal et apprentissage ensembliste. La combinaison de plusieurs méthodes d’apprentissage par transfert nous permet d’obtenir un classifieur qui s’affranchit des différentes sources de variabilité des signaux EEG.
Non-invasive Brain Computer Interfaces (BCIs) allow a user to control a machine using only their brain activity. The BCI system acquires electroencephalographic (EEG) signals, characterized by a low signal-to-noise ratio and an important variability both across sessions and across users. Typically, the BCI system is calibrated before each use, in a process during which the user has to perform a predefined task. This thesis studies of the sources of this variability, with the aim of exploring, designing, and implementing zero-calibration methods. We review the variability of the event related potentials (ERP), focusing mostly on a late component known as the P300. This allows us to quantify the sources of EEG signal variability. Our solution to tackle this variability is to focus on adaptive machine learning |
---|