Implication du canal potassium Kv3.1 dans la lipotoxicité du 7-cétocholestérol, 24S-hydroxycholestérol et de l’acide tétracosanoïque sur des cellules nerveuses 158N et BV-2 : Etude des relations entre Kv3.1, homéostasie potassique et métabolisme peroxysomal dans la maladie d’Alzheimer
Le potassium (K+) est impliqué dans la régulation de l’excitabilité cellulaire, la régulation du cycle cellulaire, la viabilité cellulaire, la neuroprotection et le maintien des fonctions microgliales et oligodendrocytaires. Le dysfonctionnement des canaux potassiques, décrit dans plusieurs maladies...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Dissertation |
Sprache: | fre |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Le potassium (K+) est impliqué dans la régulation de l’excitabilité cellulaire, la régulation du cycle cellulaire, la viabilité cellulaire, la neuroprotection et le maintien des fonctions microgliales et oligodendrocytaires. Le dysfonctionnement des canaux potassiques, décrit dans plusieurs maladies neurodégénératives comme la Maladie d’Alzheimer (MA), la sclérose en plaques (SEP), la maladie de Parkinson et la maladie de Huntington, pourrait être une potentiel cible thérapeutique. Les mécanismes toxiques sous-jacents de ces pathologies neurodégénératives impliquent des oxystérols, dérivés oxydés du cholestérol, et des acides gras en relation avec le métabolisme peroxysomal. Le 7-cétocholestérol (7KC), le 24S-hydroxycholestérol (24S-OHC) et l'acide tétracosanoïque (C24: 0), souvent trouvés à des taux élevés au niveau du cerveau et dans le plasma de patients atteints de maladies neurodégénératives (MA, maladie de Nieman-Pick, SEP, maladie de Parkinson, maladie de Huntington et X-ALD conduisent une rupture de l’équilibre Redox qui aboutirait à la neurodégénérescence. Dans ce contexte, il est intéressant de déterminer l’éventuelle connexion entre environnement lipidique et homéostasie potassique. L’étude in vitro a été réalisée sur des olygodendrocytes murins 158N et les cellules microgliale BV-2. Nous avons montré que la lipotoxicité du 7KC, 24S-OHC et C24:0 implique une rétention du K+ faisant intervenir les canaux potassium voltage dépendant (Kv). Ces résultats ont montré que l'inhibition des canaux Kv conduisant à une augmentation la [K+]i contribue à la cytotoxicité du 7KC, 24S-OHC et C24:0. Nous nous sommes focalisés sur le canal Kv3.1b. La retention du K+ induite par les oxystérols (7KC et 24S-OHC) serait sous le contrôle de Kv3.1b. L’étude clinique réalisée sur du plasma de MA a révélé une corrélation négative entre le taux d’acide docosahexaénoïque (DHA) et la concentration de K+. Chez les souris transgéniques J20, modèle de la MA, l’étude de la topographie d’expression de Kv3.1b et d’Abcd3, au niveau de l’hippocampe et du cortex, a montré une baisse de l’expression de ces deux marqueurs. Dans leur ensemble, les résultats obtenus ont établi des relations entre lipotoxicité, métabolisme peroxysomal et altération de l’homéostasie potassique dans la neurodégénérescence et suggèrent une possible modulation de l’expression et de l’activité de kv3.1b dans la physiopathologie des maladies neurodégénératives.
Potassium (K+) is involved in the regulation of c |
---|