Restoration super-resolution of image sequences : application to TV archive documents

Au cours du dernier siècle, le volume de vidéos stockées chez des organismes tel que l'Institut National de l'Audiovisuel a connu un grand accroissement. Ces organismes ont pour mission de préserver et de promouvoir ces contenus, car, au-delà de leur importance culturelle, ces derniers ont...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Abboud, Feriel
Format: Dissertation
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Au cours du dernier siècle, le volume de vidéos stockées chez des organismes tel que l'Institut National de l'Audiovisuel a connu un grand accroissement. Ces organismes ont pour mission de préserver et de promouvoir ces contenus, car, au-delà de leur importance culturelle, ces derniers ont une vraie valeur commerciale grâce à leur exploitation par divers médias. Cependant, la qualité visuelle des vidéos est souvent moindre comparée à celles acquises par les récents modèles de caméras. Ainsi, le but de cette thèse est de développer de nouvelles méthodes de restauration de séquences vidéo provenant des archives de télévision française, grâce à de récentes techniques d'optimisation. La plupart des problèmes de restauration peuvent être résolus en les formulant comme des problèmes d'optimisation, qui font intervenir plusieurs fonctions convexes mais non-nécessairement différentiables. Pour ce type de problèmes, on a souvent recourt à un outil efficace appelé opérateur proximal. Le calcul de l'opérateur proximal d'une fonction se fait de façon explicite quand cette dernière est simple. Par contre, quand elle est plus complexe ou fait intervenir des opérateurs linéaires, le calcul de l'opérateur proximal devient plus compliqué et se fait généralement à l'aide d'algorithmes itératifs. Une première contribution de cette thèse consiste à calculer l'opérateur proximal d'une somme de plusieurs fonctions convexes composées avec des opérateurs linéaires. Nous proposons un nouvel algorithme d'optimisation de type primal-dual, que nous avons nommé Algorithme Explicite-Implicite Dual par Blocs. L'algorithme proposé permet de ne mettre à jour qu'un sous-ensemble de blocs choisi selon une règle déterministe acyclique. Des résultats de convergence ont été établis pour les deux suites primales et duales de notre algorithme. Nous avons appliqué notre algorithme au problème de déconvolution et désentrelacement de séquences vidéo. Pour cela, nous avons modélisé notre problème sous la forme d'un problème d'optimisation dont la solution est obtenue à l'aide de l'algorithme explicite-implicite dual par blocs. Dans la deuxième partie de cette thèse, nous nous sommes intéressés au développement d'une version asynchrone de notre l'algorithme explicite-implicite dual par blocs. Dans cette nouvelle extension, chaque fonction est considérée comme locale et rattachée à une unité de calcul. Ces unités de calcul traitent les fonctions de façon indépendante les unes des autres. Afin d'obteni