Capteurs intelligents : quelles méthodologies pour la fusion de données embarquées ?
Fruit d’un travail collaboratif entre le LAAS-CNRS de Toulouse et l’entreprise MEAS-France / TE Connectivity, ces travaux ont consisté en la mise en place d’une méthodologie permettant la réalisation de capteurs embarqués intelligents utilisant la fusion de données multi-physique pour estimer un par...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Dissertation |
Sprache: | fre |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Fruit d’un travail collaboratif entre le LAAS-CNRS de Toulouse et l’entreprise MEAS-France / TE Connectivity, ces travaux ont consisté en la mise en place d’une méthodologie permettant la réalisation de capteurs embarqués intelligents utilisant la fusion de données multi-physique pour estimer un paramètre en amoindrissant l’impact des variations environnementales.Nous explorons ici les méthodes liées à la modélisation et l’estimation de paramètres au travers des filtres de Kalman, pour les systèmes linéaires, et des filtres de Kalman étendus (EKF) et Unscented Kalman Filter pour les systèmes non-linéaires. Nous proposons ensuite des méthodes hybrides permettant d’obtenir le meilleur rapport charge de calculs/précision pour les systèmes présentant une évolution linéaire et une mesure non-linéaire.Après une étude de la complexité algorithmique des différentes solutions, nous proposons des méthodes permettant de diminuer la charge de calculs afin de satisfaire les contraintes temps-réel avec une faible puissance de calculs, telles que trouvées couramment dans les applications embarquées. La méthode développée est finalement appliquée sur deux cas applicatifs concrets : le capteur de qualité d’urée de la société MEAS-France/TE Connectivity et le capteur d’analyse du mouvement AREM développés au cours de la thèse au sein du LAAS-CNRS.
The work detailed in this document is the result of a collaborative effort of the LAAS-CNRS in Toulouse and MEAS-France / TE Connectivity during a period of three years.The goal here is to develop a methodology to design smart embedded sensors with the ability to estimate physical parameters based on multi-physical data fusion. This strategy tends to integrate sensors technologies, currently dedicated to lab measurements, in low powered embedded systems working in imperfects environments. After exploring model oriented methods, parameters estimations and Kalman filters, we detail various existing solutions upon which we can build a valid response to multi-physical data fusion problematics, for linear systems with the Kalman Filter, and for non-linear systems with the Extended Kalman Filter and the Unscented Kalman Filter.Then, we will synthesize a filter for hybrid systems, having a linear evolution model and a non-linear measurement model. For example, using the best of the two worlds in order to obtain the best complexity/precision ratio. Once we selected the estimation method, we detail computing power and algorithm complexity |
---|