Développement de matériaux thermoélectriques de type half-Heusler pour application dans la gamme de température300 à 500 C
Depuis les cinquante dernières années, les préoccupations d’ordre énergétique sont au cœur de l’actualité. Or, une grande partie de l’énergie produite est rejetée et perdue sous forme de chaleur. Ainsi, la récupération d’énergie par des générateurs thermoélectriques apparaît comme une solution pour...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Dissertation |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Depuis les cinquante dernières années, les préoccupations d’ordre énergétique sont au cœur de l’actualité. Or, une grande partie de l’énergie produite est rejetée et perdue sous forme de chaleur. Ainsi, la récupération d’énergie par des générateurs thermoélectriques apparaît comme une solution pour le mixe énergétique de demain.La thermoélectricité est la conversion directe et réciproque entre énergie thermique et électrique. Les générateurs thermoélectriques sont constitués d’un assemblage de plots de semi-conducteurs de type n et p. Un gradient de température appliqué entre les deux faces du générateur entraîne une migration des charges du matériau qui génère un courant électrique.Les systèmes thermoélectriques ont attiré l’attention du monde scientifique grâce à leurs avantages comparativement aux moyens de récupération d’énergie plus conventionnels. Ce sont des dispositifs compacts, statiques, silencieux et fiables, qui possèdent une longue durée de vie sans nécessiter de maintenance et impactant peu l’environnement.Pour la récupération d'énergie, le challenge actuel est la perte d’énergie thermique des automobiles et des camions ainsi que la chaleur perdue générée dans les industries de la métallurgie ou du nucléaire, par exemple. Ces deux segments nécessitent l’utilisation de modules thermoélectriques ayant un rendement optimum dans la gamme de température 300-600 °C.La performance d’un matériau thermoélectrique est exprimée par le facteur de mérite ZT, donné par l’expression : ZT=S2σT/к. Un ZT élevé peut être obtenu en optimisant les propriétés de transport du matériau. Le coefficient de Seebeck (S), et la conductivité électrique (σ), doivent être le plus élevé possible, alors que la conductivité thermique (κ) doit rester faible.Afin d’être viable pour une production industrielle, un matériau thermoélectrique doit répondre à un certain nombre de critères. Premièrement, ses composants doivent être non toxiques, peu chers et abondants. Ensuite, la voie de fabrication doit être robuste et compatible avec une production en grand volume. Enfin, les matériaux élaborés doivent posséder des propriétés thermoélectriques satisfaisantes dans la gamme de température de l’application visée. Ils doivent également être stables selon les environnements liés à l’application et avoir une bonne tenue mécanique.Les matériaux de type half-Heusler apparaissent comme prometteurs pour la génération de puissance thermoélectrique dans la gamme de température 300-600 °C. En e |
---|