Simulations Monte Carlo des effets des photons de 250 keV sur un fantôme 3D réaliste de mitochondrie et évaluation des effets des nanoparticules d'or sur les caractéristiques des irradiations

Dans le domaine de la radiobiologie, les dommages causés à l'ADN nucléaire sont largement étudiés puisque l’ADN est considéré la cible la plus sensible dans la cellule. En plus de l’ADN, les mitochondries commencent à attirer l'attention comme des cibles sensibles, car elles contrôlent de...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Zein, Sara
Format: Dissertation
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Dans le domaine de la radiobiologie, les dommages causés à l'ADN nucléaire sont largement étudiés puisque l’ADN est considéré la cible la plus sensible dans la cellule. En plus de l’ADN, les mitochondries commencent à attirer l'attention comme des cibles sensibles, car elles contrôlent de nombreuses fonctions importantes pour la survie de la cellule. Ce sont des organites à double membranes principalement chargées de la production d'énergie ainsi que la régulation réactive des espèces d'oxygène, la signalisation cellulaire et le contrôle de l'apoptose. Certaines expériences ont montré qu'après exposition aux rayonnements ionisants, les teneurs mitochondriales sont modifiées et leurs fonctions sont affectées. C'est pourquoi nous sommes intéressés par l'étude des effets des rayonnements ionisants sur les mitochondries. À l'échelle microscopique, les simulations Monte-Carlo sont utiles pour reproduire les traces de particules ionisantes pour une étude approfondie. Par conséquent, nous avons produit des fantômes 3D de mitochondries à partir d'images microscopiques de cellules fibroblastiques. Ces fantômes ont été transformés de façon à être téléchargés dans Geant4 sous forme de mailles tessélisées et tétraédriques remplies d'eau représentant la géométrie réaliste de ces organites. Les simulations numériques ont été effectuées afin de calculer les dépôts d’énergie induits par des photons de 250 keV à l'intérieur de ces fantômes. Les processus électromagnétiques Geant4-DNA sont utilisés pour simuler les traces des électrons secondaires produits. Étant donné que les dommages groupés sont plus difficiles à réparer par les cellules, un algorithme spécifique est utilisé pour étudier le regroupement spatial des dégâts potentiels des rayonnements. En radiothérapie, il est difficile de donner une dose efficace aux sites de la tumeur sans affecter les tissus environnants sains. L'utilisation de nanoparticules d'or comme radio-sensibilisateurs semble être prometteuse. Leur coefficient d'absorption élevé augmente la probabilité d’interaction des photons et induit une dose tumorale plus importante lorsque ces particules sont absorbés de manière préférentielle dans les tumeurs. Puisque l'or a un nombre atomique élevé, les électrons Auger sont produits en abondance. Ces électrons ont une portée plus faible que les photoélectrons, ce qui leur permet de déposer la majeure partie de leur énergie près de la nanoparticule, ce qui augmente la dose locale. Nous avons étudié l'effet