Task-based multifrontal QR solver for heterogeneous architectures

Afin de s'adapter aux architectures multicoeurs et aux machines de plus en plus complexes, les modèles de programmations basés sur un parallélisme de tâche ont gagné en popularité dans la communauté du calcul scientifique haute performance. Les moteurs d'exécution fournissent une interface...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Lopez, Florent
Format: Dissertation
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Afin de s'adapter aux architectures multicoeurs et aux machines de plus en plus complexes, les modèles de programmations basés sur un parallélisme de tâche ont gagné en popularité dans la communauté du calcul scientifique haute performance. Les moteurs d'exécution fournissent une interface de programmation qui correspond à ce paradigme ainsi que des outils pour l'ordonnancement des tâches qui définissent l'application. Dans cette étude, nous explorons la conception de solveurs directes creux à base de tâches, qui représentent une charge de travail extrêmement irrégulière, avec des tâches de granularités et de caractéristiques différentes ainsi qu'une consommation mémoire variable, au-dessus d'un moteur d'exécution. Dans le cadre du solveur qr mumps, nous montrons dans un premier temps la viabilité et l'efficacité de notre approche avec l'implémentation d'une méthode multifrontale pour la factorisation de matrices creuses, en se basant sur le modèle de programmation parallèle appelé "flux de tâches séquentielles" (Sequential Task Flow). Cette approche, nous a ensuite permis de développer des fonctionnalités telles que l'intégration de noyaux dense de factorisation de type "minimisation de cAfin de s'adapter aux architectures multicoeurs et aux machines de plus en plus complexes, les modèles de programmations basés sur un parallélisme de tâche ont gagné en popularité dans la communauté du calcul scientifique haute performance. Les moteurs d'exécution fournissent une interface de programmation qui correspond à ce paradigme ainsi que des outils pour l'ordonnancement des tâches qui définissent l'application. Dans cette étude, nous explorons la conception de solveurs directes creux à base de tâches, qui représentent une charge de travail extrêmement irrégulière, avec des tâches de granularités et de caractéristiques différentes ainsi qu'une consommation mémoire variable, au-dessus d'un moteur d'exécution. Dans le cadre du solveur qr mumps, nous montrons dans un premier temps la viabilité et l'efficacité de notre approche avec l'implémentation d'une méthode multifrontale pour la factorisation de matrices creuses, en se basant sur le modèle de programmation parallèle appelé "flux de tâches séquentielles" (Sequential Task Flow). Cette approche, nous a ensuite permis de développer des fonctionnalités telles que l'intégration de noyaux dense de factorisation de type "minimisation de cAfin de s'adapter aux architectures multicoeurs et aux machines de plus en plus comp