Approche coopérative et non supervisée de partitionnement d’images hyperspectrales pour l’aide à la décision
Les images hyperspectrales sont des images complexes qui ne peuvent être partitionnées avec succès en utilisant une seule méthode de classification. Les méthodes de classification non coopératives, paramétriques ou non paramétriques peuvent être classées en trois catégories : supervisée, semi-superv...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Dissertation |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Les images hyperspectrales sont des images complexes qui ne peuvent être partitionnées avec succès en utilisant une seule méthode de classification. Les méthodes de classification non coopératives, paramétriques ou non paramétriques peuvent être classées en trois catégories : supervisée, semi-supervisée et non supervisée. Les méthodes paramétriques supervisées nécessitent des connaissances a priori et des hypothèses sur les distributions des données à partitionner. Les méthodes semi-supervisées nécessitent des connaissances a priori limitées (nombre de classes, nombre d'itérations), alors que les méthodes de la dernière catégorie ne nécessitent aucune connaissance. Dans le cadre de cette thèse un nouveau système coopératif et non supervisé est développé pour le partitionnement des images hyperspectrales. Son originalité repose sur i) la caractérisation des pixels en fonction de la nature des régions texturées et non-texturées, ii) l'introduction de plusieurs niveaux d'évaluation et de validation des résultats intermédiaires, iii) la non nécessité d'information a priori. Le système mis en ouvre est composé de quatre modules: Le premier module, partitionne l'image en deux types de régions texturées et non texturées. Puis, les pixels sont caractérisés en fonction de leur appartenance à ces régions. Les attributs de texture pour les pixels appartenant aux régions texturées, et la moyenne locale pour les pixels appartenant aux régions non texturées. Le deuxième module fait coopérer parallèlement deux classifieurs (C-Moyen floue : FCM et l'algorithme Adaptatif Incrémental Linde-Buzo-Gray : AILBG) pour partitionner chaque composante. Pour rendre ces algorithmes non supervisés, le nombre de classes est estimé suivant un critère basé sur la dispersion moyenne pondérée des classes. Le troisième module évalue et gère suivant deux niveaux les conflits des résultats de classification obtenus par les algorithmes FCM et AILBG optimisés. Le premier identifie les pixels classés dans la même classe par les deux algorithmes et les reportent directement dans le résultat final d'une composante. Le second niveau utilise un algorithme génétique (GA), pour gérer les conflits entre les pixels restant. Le quatrième module est dédié aux cas des images multi-composantes. Les trois premiers modules sont appliqués tout d'abord sur chaque composante indépendamment. Les composantes adjacentes ayant des résultats de classification fortement similaires sont regroupées dans un même sous-ens |
---|