Effets de la terminaison de l’α-alumine sur le comportement au mouillage du zinc
Le procédé de galvanisation à chaud se compose d’un recuit continu suivi d’une immersion de la bande d’acier dans un bain de zinc afin de lui conférer une protection contre la corrosion. Au cours de l’étape de recuit de recristallisation des nouveaux aciers, dits à « haute limite élastique », les él...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Dissertation |
Sprache: | fre |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Le procédé de galvanisation à chaud se compose d’un recuit continu suivi d’une immersion de la bande d’acier dans un bain de zinc afin de lui conférer une protection contre la corrosion. Au cours de l’étape de recuit de recristallisation des nouveaux aciers, dits à « haute limite élastique », les éléments d’addition, tel que l’aluminium, ségrégent et diffusent en surface où ils forment des îlots voire des films superficiels qui, mal mouillés par le zinc liquide, nuisent à la qualité du produit final. Dans ce cadre, l’étude s’est attachée d’une part à caractériser l’oxydation sélective d’alliages binaires Fe-Al et d’autre part, dans le cas modèle de l’α-alumine (0001), à déterminer les effets de la terminaison de surface sur l’énergie d’adhésion du zinc, à l’aide d’une approche combinant simulations numériques ab initio (théorie de la fonctionnelle de la densité) et expériences sous ultra-vide (réflectivité UV-visible, photoémission et désorption thermique). A l’issu de recuits calqués sur les conditions industrielles les alliages binaires Fe-Al (1,5 et 8% pds.) présentent en surface une couche couvrante d’γ-alumine de plusieurs nanomètres d’épaisseur. Une entrée du flux de gaz focalisée sur l’échantillon aboutit à une croissance vermiculaire des grains d’alumine alors qu’un flux de gaz homogène engendre une croissance plus structurée qui montre que l’approche modèle Zn/α-alumine (0001) est pertinente.Les simulations numériques faites aux premiers stades du dépôt, ont montré que, le zinc interagit faiblement avec la surface stœchiométrique (1x1), ce qui confirme l’expérience. Expérience et calcul convergent sur la valeur de ≈ 0,5 eV de l’énergie d’adsorption. Par contre, un excès de charge de surface peut considérablement renforcer l’adsorption. Deux mécanismes ont été identifiés et décrits en terme de stabilité thermodynamique, en fonction des conditions environnementales (pression, température) : (i) une sous-stœchiométrie surfacique en Al, telle que présente sur la terminaison polaire, (ii) un excès de groupements hydroxyles de surfaces, issus de la dissociation de l’eau, opérationnel aussi bien sur la terminaison polaire que non-polaire de l’alumine. En parallèle avec l’expérience, la simulation montre que le zinc est capable d’interagir fortement avec la surface en en déplaçant l’hydrogène des groupements hydroxyles de surface. L’énergie d’adsorption du zinc ainsi adsorbé, évaluée à 7 eV par le calcul, est du même ordre que la valeur expérimentale de 3 |
---|