Exploration de matériaux avancés pour des applications en génie civil

Le progrès dans le domaine du génie civil n’aurait pas été possible sans le développement de nouveaux matériaux. En fait, les nouveaux matériaux avec des propriétés performantes ont permis la construction de structures modernes, de plus grands bâtiments, de plus grands ponts…etc. En outre, il est im...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Bouibes, Amine
Format: Dissertation
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Le progrès dans le domaine du génie civil n’aurait pas été possible sans le développement de nouveaux matériaux. En fait, les nouveaux matériaux avec des propriétés performantes ont permis la construction de structures modernes, de plus grands bâtiments, de plus grands ponts…etc. En outre, il est important de continuer le progrès et le développement des matériaux dans le futur. En particulier, dans l'approche des constructions intelligentes, nous aurons besoin de nouveaux matériaux aux propriétés très performantes. L'étude des propriétés des matériaux, à l'échelle moléculaire, permet une meilleure compréhension de la façon dont ces matériaux fonctionnent et réagissent à un niveau macro. C’est grâce à de tells études que nous sommes en mesure de comprendre leurs comportements sous des conditions variables. Dans cette thèse, nous focalisons nos efforts sur trois types de matériaux. Le premier est le carbonate de zinc. Le second est la chaux, qui est largement utilisée dans le domaine de la construction et les travaux publics; et le dernier est l'oxyde de zinc, qui est un matériau important pour les constructions en acier. Notre but est d'étudier en détail ces trois différents matériaux à diverses pressions et à compositions variables par la méthode de prédiction de structures basée sur l’approche ab initio. Pour la smithsonite, un bon nombre de propriétés mécaniques a été évalué. Nous montrons notamment que ce système est plus dur et plus rigide que les autres carbonates. En outre, l'étude de ses propriétés électroniques révèle que l'énergie de la bande interdite est assez proche de certains semi-conducteurs. Par ailleurs, deux transitions de phase à haute pression ont été trouvées: la première à 87 GPa et la seconde à 121 GPa. En dessous de 87 GPa, ZnCO3 est stable sous la structure de groupe d’espace R-3c (structure de calcite); et entre 78 GPa et 121 GPa, ZnCO3 se stabilise sous une autre structure dont le groupe d'espace est C2/m (structure de magnésite phase II). Au-delà de 121 GPa, nous montrons que la nouvelle structure de groupe d'espace P212121 devient la plus stable. Par ailleurs, en utilisant la méthode de prédiction de structure –composition variable- basée sur l’approche ab initio, nous montrons que le système Ca-O pourraient se stabiliser sous de nouvelles compositions chimiques autres que le CaO. À pression ambiante, CaO2 est prédit comme étant un système thermodynamiquement stable. Ce nouveau composé passe de la structure de groupe d’espace C