Simulation aux grandes échelles d'explosions en domaine semi-confiné
Dans le contexte actuel de croissance continue de la demande mondiale en combustible fossile, la sécurité de la production, du transport, ainsi que du stockage de l'énergie est un défi majeur de ce début de XXIème siècle. Les produits manipulés étant extrêmement volatils et inflammables, les év...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Dissertation |
Sprache: | fre |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Dans le contexte actuel de croissance continue de la demande mondiale en combustible fossile, la sécurité de la production, du transport, ainsi que du stockage de l'énergie est un défi majeur de ce début de XXIème siècle. Les produits manipulés étant extrêmement volatils et inflammables, les éventuelles fuites qui peuvent survenir malgré les lourdes mesures de sécurité mises en place, peuvent engendrer des explosions désastreuses. Il existe donc un fort besoin d'être capable de prédire ces explosions afin de limiter les dégâts potentiels et d'assurer la sécurité des personnes et des biens. Dans cette optique, l'augmentation régulière des puissances de calcul permet à la CFD (Computational Fluid Dynamics) de se présenter comme une alternative intéressante aux expériences qui peuvent s'avérer couteuses et dangereuses. Les explosions sont des phénomènes multi-physiques qui sont principalement dirigés par la turbulence et la combustion et qui prennent place sur une très large gamme d'échelles nécessitant ainsi d'être modélisées. Aujourd'hui, des codes basés sur une approche URANS (Unsteady Reynolds Averaged Navier Stokes) sont généralement utilisés afin de simuler des explosions de gaz dans des configurations à échelle industrielle. Cependant, l'émergence de la LES (Large Eddy Simulation), qui a déjà montré son potentiel à donner des prédictions plus fiables que le URANS sur des configurations instationnaires complexes, ouvre de nouvelles perspectives pour le domaine de la sécurité explosion. Le but principal de cette thèse est d'évaluer l'apport des méthodes LES et de développer une méthodologie pour la prédiction des phénomènes réactifs turbulents transitoires que sont les explosions. Tout au long de cette étude, un intérêt particulier a été porté à l'approfondissement de la compréhension des phénomènes d'explosion ainsi qu'à la mise en valeur des points cruciaux de modélisation qui permettent une reproduction correcte des phénomènes considérés. Notre approche peut alors se résumer en deux temps : - Dans un premier temps nous nous sommes concentrés sur l'étude LES des déflagrations dans une chambre de combustion de petite échelle : la configuration expérimentale de l'Université de Sydney. La LES associée à un modèle de flamme épaissie a ainsi été appliquée à cette configuration à l'aide du code AVBP (développé par le CERFACS et l'IFP-EN) et a permis de mettre en place une méthodologie de calcul. Une étude de Quantification d'Incertitude (UQ) a ensuite été ré |
---|