Résilience et vulnérabilité dans le cadre de la théorie de la viabilité et des systèmes dynamiques stochastiques contrôlés
Cette thèse propose des définitions mathématiques des concepts de résilience et de vulnérabilité dans le cadre des systèmes dynamiques stochastiques contrôlés, et en particulier celui de la viabilité stochastique en temps discret. Elle s’appuie sur les travaux antérieurs définissant la résilience da...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Dissertation |
Sprache: | eng ; fre |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Cette thèse propose des définitions mathématiques des concepts de résilience et de vulnérabilité dans le cadre des systèmes dynamiques stochastiques contrôlés, et en particulier celui de la viabilité stochastique en temps discret. Elle s’appuie sur les travaux antérieurs définissant la résilience dans le cadre de la viabilité pour des dynamiques déterministes. Les définitions proposées font l’hypothèse qu’il est possible de distinguer des aléas usuels, inclus dans la dynamique, et des événements extrêmes ou surprenants dont on étudie spécifiquement l’impact. La viabilité stochastique et la fiabilité ne mettent en jeu que le premier type d’aléa, et s’intéressent à l’évaluation de la probabilité de sortir d’un sous-ensemble de l’espace d’état dans lequel les propriétés d’intérêt du système sont satisfaites. La viabilité stochastique apparaît ainsi comme une branche de la fiabilité. Un objet central en est le noyau de viabilité stochastique, qui regroupe les états contrôlables pour que leur probabilité de garder les propriétés sur un horizon temporel défini soit supérieure à un seuil donné. Nous proposons de définir la résilience comme la probabilité de revenir dans le noyau de viabilité stochastique après un événement extrême ou surprenant. Nous utilisons la programmation dynamique stochastique pour maximiser la probabilité d’être viable ainsi que pour optimiser la probabilité de résilience à un horizon temporel donné. Nous proposons de définir ensuite la vulnérabilité à partir d’une fonction de dommage définie sur toutes les trajectoires possibles du système. La distribution des trajectoires définit donc une distribution de probabilité des dommages et nous définissons la vulnérabilité comme une statistique sur cette distribution. Cette définition s’applique aux deux types d’aléas définis précédemment. D’une part, en considérant les aléas du premier type, nous définissons des ensembles tels que la vulnérabilité soit inférieure à un seuil, ce qui généralise la notion de noyau de viabilité stochastique. D’autre part, après un aléa du deuxième type, la vulnérabilité fournit des indicateurs qui aident à décrire les trajectoires de retour (en considérant que seul l’aléa de premier type intervient). Des indicateurs de vulnérabilité lié à un coût ou au franchissement d’un seuil peuvent être minimisés par la programmation dynamique stochastique. Nous illustrons les concepts et outils développés dans la thèse en les appliquant aux indicateurs pré-existants de fiabili |
---|