Conception et réalisation de micro-capteurs de pression pour l’instrumentation d’interface à retour d’effort

Ce travail de thèse présente la conception et la réalisation d’un capteur de pression 3D flexible pouvant être intégré dans un gant ou sur un outil de chirurgie pour qualifier et quantifier les forces de préhension notamment sous contraintes normales et de cisaillement. Un état de l’art présente d’a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Nazeer, Sébastien
Format: Dissertation
Sprache:fre
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Ce travail de thèse présente la conception et la réalisation d’un capteur de pression 3D flexible pouvant être intégré dans un gant ou sur un outil de chirurgie pour qualifier et quantifier les forces de préhension notamment sous contraintes normales et de cisaillement. Un état de l’art présente d’abord les technologies se prêtant à cette application. Puis, le choix est porté sur la conception et le dimensionnement à partir de la loi de Hooke, d’un capteur matriciel capacitif tri-axe de 8 x 8 x 3 cellules/cm² à partir d’un diélectrique flexible de faible module d’Young autour de 1 MPa. Les cellules conçues ont une capacité nominale voisine de 0,5 pF. Une variation de 30% est attendue à une force maximale envisagée de 100 N/cm². La dynamique visée est de 1 à 1000. Elle correspondant à une résolution de 0,15 fF ou 100 mN/cm². La fabrication du capteur souple est abordée en prenant en compte la caractérisation des matériaux support, notamment le Kapton, dans un flux de microfabrication. Les problèmes de métallisation et d’adhérence d’électrodes sur PDMS conduisent au développement d’un procédé basé sur la technologie de transfert de film adapté aux électrodes enfouies dans le PDMS. Des résultats de simulation sous ANSYS valident le principe physique exploité. Ils sont confirmés par des mesures électriques statiques et en charge du capteur tactile pour des forces de 10 mN à 20 N. This PhD work presents the design and realization of a 3D flexible force sensor that can be integrated in surgical gloves or tools to qualify and quantify the grip forces including normal and shear stress. A state of the art first presents the suitable technologies for this application. Then, the choice is focused on the design and dimensioning, using Hooke’s law, of a capacitive tri-axis sensor of 8 x 8 x 3 cells/cm² matrix from a flexible dielectric of low Young’s modulus around 1 MPa. Designed cells have a nearby nominal capacitance of 0.5 pF. A variation of 30% is expected at maximum force range of 100 N/cm². The aimed dynamic is 1 to 1000. It corresponds to a resolution of 0.15 fF or 100 mN/cm². The flexible sensor fabrication is tackled by taking into account the characterization of support materials, notably the Kapton, in a stream of microfabrication. Metallization and adhesion of electrodes on PDMS problems lead to the development of a process based on film transfer technology adapted to electrodes buried in PDMS. On the basis of ANSYS simulations, the operating physical prin