Real time image processing : algorithm parallelization on multicore multithread architecture

Les caractéristiques topologiques d'un objet sont fondamentales dans le traitement d'image. Dansplusieurs applications, notamment l'imagerie médicale, il est important de préserver ou de contrôlerla topologie de l'image. Cependant la conception de telles transformations qui prése...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Mahmoudi, Ramzi
Format: Dissertation
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Les caractéristiques topologiques d'un objet sont fondamentales dans le traitement d'image. Dansplusieurs applications, notamment l'imagerie médicale, il est important de préserver ou de contrôlerla topologie de l'image. Cependant la conception de telles transformations qui préservent à la foi la topologie et les caractéristiques géométriques de l'image est une tache complexe, en particulier dans le cas du traitement parallèle.Le principal objectif du traitement parallèle est d'accélérer le calcul en partagent la charge de travail à réaliser entre plusieurs processeurs. Si on approche cet objectif sous l'angle de la conception algorithmique, les stratégies du calcul parallèle exploite l'ordre partiel des algorithmes, désigné également par le parallélisme naturel qui présent dans l'algorithme et qui fournit deux principales sources de parallélisme : le parallélisme de données et le parallélisme fonctionnelle.De point de vue conception architectural, il est essentiel de lier l'évolution spectaculaire desarchitectures parallèles et le traitement parallèle. En effet, si les stratégies de parallèlisation sont devenues nécessaire, c'est grâce à des améliorations considérables dans les systèmes de multitraitement ainsi que la montée des architectures multi-core. Toutes ces raisons font du calculeparallèle une approche très efficace. Dans le cas des machines à mémoire partagé, il existe un autreavantage à savoir le partage immédiat des données qui offre plus de souplesse, notamment avec l'évolution du système d'interconnexion entre processeurs, dans la conception de ces stratégies etl'exploitation du parallélisme de données et le parallélisme fonctionnel.Dans cette perspective, nous proposons une nouvelle stratégie de parallèlisation, baptisé SD&M(Split, Distribute and Merge) stratégie qui couvrent une large classe d'opérateurs topologiques.SD&M a été développée afin de fournir un traitement parallèle de tout opérateur basée sur latransformation topologique. Basé sur cette stratégie, nous avons proposé une série d'algorithmestopologiques parallèle (nouvelle version ou version adapté). Nos principales contributions sont :(1)Une nouvelle approche pour calculer la ligne de partage des eaux basée sur ‘MSF transform'.L'algorithme proposé est parallèle, préserve la topologie, n'a pas besoin d'extraction préalable deminima et adaptée pour les machines parallèle à mémoire partagée. Il utilise la même approchede calcule de flux proposé par Jean Cousty et il ne nécessite au