Mise en oeuvre et comportement mécanique de composites organiques renforcés de structures 3D interlocks
Les composites 3D renforcés de tissus interlocks d'angle couche-à-couche sont recherchés pour leurs bonnes résistances au délaminage et aux impacts. Cependant, la détermination précise du comportement mécanique de tels composites est complexe à cause de leur architecture numérique. L'objec...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Dissertation |
Sprache: | fre |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Les composites 3D renforcés de tissus interlocks d'angle couche-à-couche sont recherchés pour leurs bonnes résistances au délaminage et aux impacts. Cependant, la détermination précise du comportement mécanique de tels composites est complexe à cause de leur architecture numérique. L'objectif de ce travail est de déterminer les modules élastiques d'une plaque équivalente, en traction et en flexion, par une méthode d'homogénéisation asymptotique appliquée à une cellule unité périodique. Un programme spécifique est développé, permettant la modélisation géométrique et l'analyse mécanique de manière systématique et efficace. Cet outil permet de considérer l'influence du procédé de fabrication sur les paramètres géométriques et matériaux : l'architecture réelle après infusion et l'endommagement des fils durant le tissage. Les propriétés élastiques équivalentes sont validées par des simulations de plaques hétérogènes 3D et par comparaison expérimentale. L'interface fil/matrice est aussi analysée pour l'initiation d'endommagement dans le composite, introduit dans l'outil numérique par des surfaces cohésives, afin de compléter la modélisation du comportement mécanique.
3D composites reinforced with layer-to-layer angle-interlock fabrics are attractive due to their superior properties in delamination and impact damage resistance. Nevertheless, the accurate prediction of the mechanical behavior of such composites is challenging due to the complex architecture. The purpose of this work is to assess the equivalent membrane and bending elastic moduli of the shell-type structure by a numerical asymptotic homogenization procedure on a periodic unit cell. A specific program is developed, allowing for parameterized geometrical modeling and mechanical analysis in a systematic and efficient way. This numerical tool enables to consider the influence of the manufacturing process on the geometric and material parameters: the real composite architecture after infusion and the yarn damage during weaving. The effective elastic properties are finally validated using numerical computations on 3D heterogeneous plates and by comparison with experimental tests. The yarn/matrix interface is also analyzed in terms of damage initiation into the composite, represented by cohesive surfaces in the numerical tool, in order to complete the understanding of its mechanical behavior. |
---|