Breaking into machine learning engineering a primer on MLE skills and interviews for beginners
Machine learning powers all the major tech companies-all major search engines, web browsers, media sites (such as Spotify and Youtube) use machine learning. One in ten enterprises use ML/AI applications such as chatbots, fraud detection, and other algorithms. As such, it is a massive industry bringi...
Gespeichert in:
Weitere Verfasser: | |
---|---|
Format: | Elektronisch Video |
Sprache: | English |
Veröffentlicht: |
[Sebastopol, California]
O'Reilly Media, Inc.
[2024]
|
Ausgabe: | [First edition]. |
Schlagworte: | |
Online-Zugang: | lizenzpflichtig |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
MARC
LEADER | 00000ngm a22000002 4500 | ||
---|---|---|---|
001 | ZDB-30-ORH-109654781 | ||
003 | DE-627-1 | ||
005 | 20241107103332.0 | ||
006 | m o | | | ||
007 | cr uuu---uuuuu | ||
008 | 241107s2024 xx ||| |o o ||eng c | ||
035 | |a (DE-627-1)109654781 | ||
035 | |a (DE-599)KEP109654781 | ||
035 | |a (ORHE)0642572057770 | ||
035 | |a (DE-627-1)109654781 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | |a 006.3/1 |2 23/eng/20241010 | |
245 | 1 | 0 | |a Breaking into machine learning engineering |b a primer on MLE skills and interviews for beginners |
250 | |a [First edition]. | ||
264 | 1 | |a [Sebastopol, California] |b O'Reilly Media, Inc. |c [2024] | |
300 | |a 1 online resource (1 video file (57 min.)) |b sound, color. | ||
336 | |a zweidimensionales bewegtes Bild |b tdi |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a Online resource; title from title details screen (O'Reilly, viewed October 10, 2024) | ||
520 | |a Machine learning powers all the major tech companies-all major search engines, web browsers, media sites (such as Spotify and Youtube) use machine learning. One in ten enterprises use ML/AI applications such as chatbots, fraud detection, and other algorithms. As such, it is a massive industry bringing in billions of dollars of value, with high demand for talent. This course teaches learners how to get started in the ML field: what skills to learn and what MLE interviews entail. This course gives an overview of various MLE roles (including GenAI), interview components such as ML theory, programming, and behavioral interviews, and what skills job seekers need to prepare. After this course, you will walk away with a clear set of steps you can take to break into machine learning engineering. | ||
650 | 0 | |a Machine learning | |
650 | 0 | |a Artificial intelligence | |
650 | 4 | |a Apprentissage automatique | |
650 | 4 | |a Intelligence artificielle | |
650 | 4 | |a artificial intelligence | |
650 | 4 | |a Instructional films | |
650 | 4 | |a Nonfiction films | |
650 | 4 | |a Internet videos | |
650 | 4 | |a Films de formation | |
650 | 4 | |a Films autres que de fiction | |
650 | 4 | |a Vidéos sur Internet | |
700 | 1 | |a Chang, Susan Shu |e MitwirkendeR |4 ctb | |
710 | 2 | |a O'Reilly (Firm), |e Verlag |4 pbl | |
856 | 4 | 0 | |l TUM01 |p ZDB-30-ORH |q TUM_PDA_ORH |u https://learning.oreilly.com/library/view/-/0642572057770/?ar |m X:ORHE |x Aggregator |z lizenzpflichtig |3 Volltext |
912 | |a ZDB-30-ORH | ||
935 | |c vide | ||
951 | |a BO | ||
912 | |a ZDB-30-ORH | ||
049 | |a DE-91 |
Datensatz im Suchindex
DE-BY-TUM_katkey | ZDB-30-ORH-109654781 |
---|---|
_version_ | 1818767362236612608 |
adam_text | |
any_adam_object | |
author2 | Chang, Susan Shu |
author2_role | ctb |
author2_variant | s s c ss ssc |
author_facet | Chang, Susan Shu |
building | Verbundindex |
bvnumber | localTUM |
collection | ZDB-30-ORH |
ctrlnum | (DE-627-1)109654781 (DE-599)KEP109654781 (ORHE)0642572057770 |
dewey-full | 006.3/1 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 006 - Special computer methods |
dewey-raw | 006.3/1 |
dewey-search | 006.3/1 |
dewey-sort | 16.3 11 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik |
edition | [First edition]. |
format | Electronic Video |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02515ngm a22004932 4500</leader><controlfield tag="001">ZDB-30-ORH-109654781</controlfield><controlfield tag="003">DE-627-1</controlfield><controlfield tag="005">20241107103332.0</controlfield><controlfield tag="006">m o | | </controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">241107s2024 xx ||| |o o ||eng c</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627-1)109654781</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)KEP109654781</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ORHE)0642572057770</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627-1)109654781</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">006.3/1</subfield><subfield code="2">23/eng/20241010</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Breaking into machine learning engineering</subfield><subfield code="b">a primer on MLE skills and interviews for beginners</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">[First edition].</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">[Sebastopol, California]</subfield><subfield code="b">O'Reilly Media, Inc.</subfield><subfield code="c">[2024]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (1 video file (57 min.))</subfield><subfield code="b">sound, color.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">zweidimensionales bewegtes Bild</subfield><subfield code="b">tdi</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Online resource; title from title details screen (O'Reilly, viewed October 10, 2024)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Machine learning powers all the major tech companies-all major search engines, web browsers, media sites (such as Spotify and Youtube) use machine learning. One in ten enterprises use ML/AI applications such as chatbots, fraud detection, and other algorithms. As such, it is a massive industry bringing in billions of dollars of value, with high demand for talent. This course teaches learners how to get started in the ML field: what skills to learn and what MLE interviews entail. This course gives an overview of various MLE roles (including GenAI), interview components such as ML theory, programming, and behavioral interviews, and what skills job seekers need to prepare. After this course, you will walk away with a clear set of steps you can take to break into machine learning engineering.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Machine learning</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Artificial intelligence</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Apprentissage automatique</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Intelligence artificielle</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">artificial intelligence</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Instructional films</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nonfiction films</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Internet videos</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Films de formation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Films autres que de fiction</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Vidéos sur Internet</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chang, Susan Shu</subfield><subfield code="e">MitwirkendeR</subfield><subfield code="4">ctb</subfield></datafield><datafield tag="710" ind1="2" ind2=" "><subfield code="a">O'Reilly (Firm),</subfield><subfield code="e">Verlag</subfield><subfield code="4">pbl</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">TUM01</subfield><subfield code="p">ZDB-30-ORH</subfield><subfield code="q">TUM_PDA_ORH</subfield><subfield code="u">https://learning.oreilly.com/library/view/-/0642572057770/?ar</subfield><subfield code="m">X:ORHE</subfield><subfield code="x">Aggregator</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="935" ind1=" " ind2=" "><subfield code="c">vide</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">BO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield></datafield></record></collection> |
id | ZDB-30-ORH-109654781 |
illustrated | Not Illustrated |
indexdate | 2024-12-18T08:48:40Z |
institution | BVB |
language | English |
open_access_boolean | |
owner | DE-91 DE-BY-TUM |
owner_facet | DE-91 DE-BY-TUM |
physical | 1 online resource (1 video file (57 min.)) sound, color. |
psigel | ZDB-30-ORH |
publishDate | 2024 |
publishDateSearch | 2024 |
publishDateSort | 2024 |
publisher | O'Reilly Media, Inc. |
record_format | marc |
spelling | Breaking into machine learning engineering a primer on MLE skills and interviews for beginners [First edition]. [Sebastopol, California] O'Reilly Media, Inc. [2024] 1 online resource (1 video file (57 min.)) sound, color. zweidimensionales bewegtes Bild tdi rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Online resource; title from title details screen (O'Reilly, viewed October 10, 2024) Machine learning powers all the major tech companies-all major search engines, web browsers, media sites (such as Spotify and Youtube) use machine learning. One in ten enterprises use ML/AI applications such as chatbots, fraud detection, and other algorithms. As such, it is a massive industry bringing in billions of dollars of value, with high demand for talent. This course teaches learners how to get started in the ML field: what skills to learn and what MLE interviews entail. This course gives an overview of various MLE roles (including GenAI), interview components such as ML theory, programming, and behavioral interviews, and what skills job seekers need to prepare. After this course, you will walk away with a clear set of steps you can take to break into machine learning engineering. Machine learning Artificial intelligence Apprentissage automatique Intelligence artificielle artificial intelligence Instructional films Nonfiction films Internet videos Films de formation Films autres que de fiction Vidéos sur Internet Chang, Susan Shu MitwirkendeR ctb O'Reilly (Firm), Verlag pbl TUM01 ZDB-30-ORH TUM_PDA_ORH https://learning.oreilly.com/library/view/-/0642572057770/?ar X:ORHE Aggregator lizenzpflichtig Volltext |
spellingShingle | Breaking into machine learning engineering a primer on MLE skills and interviews for beginners Machine learning Artificial intelligence Apprentissage automatique Intelligence artificielle artificial intelligence Instructional films Nonfiction films Internet videos Films de formation Films autres que de fiction Vidéos sur Internet |
title | Breaking into machine learning engineering a primer on MLE skills and interviews for beginners |
title_auth | Breaking into machine learning engineering a primer on MLE skills and interviews for beginners |
title_exact_search | Breaking into machine learning engineering a primer on MLE skills and interviews for beginners |
title_full | Breaking into machine learning engineering a primer on MLE skills and interviews for beginners |
title_fullStr | Breaking into machine learning engineering a primer on MLE skills and interviews for beginners |
title_full_unstemmed | Breaking into machine learning engineering a primer on MLE skills and interviews for beginners |
title_short | Breaking into machine learning engineering |
title_sort | breaking into machine learning engineering a primer on mle skills and interviews for beginners |
title_sub | a primer on MLE skills and interviews for beginners |
topic | Machine learning Artificial intelligence Apprentissage automatique Intelligence artificielle artificial intelligence Instructional films Nonfiction films Internet videos Films de formation Films autres que de fiction Vidéos sur Internet |
topic_facet | Machine learning Artificial intelligence Apprentissage automatique Intelligence artificielle artificial intelligence Instructional films Nonfiction films Internet videos Films de formation Films autres que de fiction Vidéos sur Internet |
url | https://learning.oreilly.com/library/view/-/0642572057770/?ar |
work_keys_str_mv | AT changsusanshu breakingintomachinelearningengineeringaprimeronmleskillsandinterviewsforbeginners AT oreillyfirm breakingintomachinelearningengineeringaprimeronmleskillsandinterviewsforbeginners |