Modern Graph Theory Algorithms with Python Harness the Power of Graph Algorithms and Real-World Network Applications Using Python

We are living in the age of big data, and scalable solutions are a necessity. Network science leverages the power of graph theory and flexible data structures to analyze big data at scale. This book guides you through the basics of network science, showing you how to wrangle different types of data...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Farrelly, Colleen (VerfasserIn), Mutombo, Franck Kalala (VerfasserIn)
Weitere Verfasser: Giske, Michael (MitwirkendeR)
Format: Elektronisch E-Book
Sprache:English
Veröffentlicht: Birmingham Packt Publishing, Limited 2024
Ausgabe:1st edition.
Schlagworte:
Online-Zugang:lizenzpflichtig
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a22000002 4500
001 ZDB-30-ORH-104370823
003 DE-627-1
005 20240701091202.0
007 cr uuu---uuuuu
008 240701s2024 xx |||||o 00| ||eng c
020 |a 9781805120179  |9 978-1-80512-017-9 
020 |a 1805120174  |9 1-80512-017-4 
035 |a (DE-627-1)104370823 
035 |a (DE-599)KEP104370823 
035 |a (ORHE)9781805127895 
035 |a (DE-627-1)104370823 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
082 0 |a 005.13/3  |2 23/eng/20240617 
100 1 |a Farrelly, Colleen  |e VerfasserIn  |4 aut 
245 1 0 |a Modern Graph Theory Algorithms with Python  |b Harness the Power of Graph Algorithms and Real-World Network Applications Using Python  |c Colleen M. Farrely, Franck Kalala Mutombo ; foreword by Michael Giske 
250 |a 1st edition. 
264 1 |a Birmingham  |b Packt Publishing, Limited  |c 2024 
300 |a 1 online resource (290 p.) 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Description based upon print version of record. - Friendship network introduction 
520 |a We are living in the age of big data, and scalable solutions are a necessity. Network science leverages the power of graph theory and flexible data structures to analyze big data at scale. This book guides you through the basics of network science, showing you how to wrangle different types of data (such as spatial and time series data) into network structures. You'll be introduced to core tools from network science to analyze real-world case studies in Python. As you progress, you'll find out how to predict fake news spread, track pricing patterns in local markets, forecast stock market crashes, and stop an epidemic spread. Later, you'll learn about advanced techniques in network science, such as creating and querying graph databases, classifying datasets with graph neural networks (GNNs), and mining educational pathways for insights into student success. Case studies in the book will provide you with end-to-end examples of implementing what you learn in each chapter. By the end of this book, you'll be well-equipped to wrangle your own datasets into network science problems and scale solutions with Python. 
650 0 |a Python (Computer program language) 
650 0 |a Computer algorithms 
650 4 |a Python (Langage de programmation) 
650 4 |a Algorithmes 
650 4 |a algorithms 
700 1 |a Mutombo, Franck Kalala  |e VerfasserIn  |4 aut 
700 1 |a Giske, Michael  |e MitwirkendeR  |4 ctb 
856 4 0 |l TUM01  |p ZDB-30-ORH  |q TUM_PDA_ORH  |u https://learning.oreilly.com/library/view/-/9781805127895/?ar  |m X:ORHE  |x Aggregator  |z lizenzpflichtig  |3 Volltext 
912 |a ZDB-30-ORH 
951 |a BO 
912 |a ZDB-30-ORH 
049 |a DE-91 

Datensatz im Suchindex

DE-BY-TUM_katkey ZDB-30-ORH-104370823
_version_ 1818767367785676800
adam_text
any_adam_object
author Farrelly, Colleen
Mutombo, Franck Kalala
author2 Giske, Michael
author2_role ctb
author2_variant m g mg
author_facet Farrelly, Colleen
Mutombo, Franck Kalala
Giske, Michael
author_role aut
aut
author_sort Farrelly, Colleen
author_variant c f cf
f k m fk fkm
building Verbundindex
bvnumber localTUM
collection ZDB-30-ORH
ctrlnum (DE-627-1)104370823
(DE-599)KEP104370823
(ORHE)9781805127895
dewey-full 005.13/3
dewey-hundreds 000 - Computer science, information, general works
dewey-ones 005 - Computer programming, programs, data, security
dewey-raw 005.13/3
dewey-search 005.13/3
dewey-sort 15.13 13
dewey-tens 000 - Computer science, information, general works
discipline Informatik
edition 1st edition.
format Electronic
eBook
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02749nam a22004332 4500</leader><controlfield tag="001">ZDB-30-ORH-104370823</controlfield><controlfield tag="003">DE-627-1</controlfield><controlfield tag="005">20240701091202.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240701s2024 xx |||||o 00| ||eng c</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781805120179</subfield><subfield code="9">978-1-80512-017-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1805120174</subfield><subfield code="9">1-80512-017-4</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627-1)104370823</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)KEP104370823</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ORHE)9781805127895</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627-1)104370823</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">005.13/3</subfield><subfield code="2">23/eng/20240617</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Farrelly, Colleen</subfield><subfield code="e">VerfasserIn</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Modern Graph Theory Algorithms with Python</subfield><subfield code="b">Harness the Power of Graph Algorithms and Real-World Network Applications Using Python</subfield><subfield code="c">Colleen M. Farrely, Franck Kalala Mutombo ; foreword by Michael Giske</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1st edition.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Birmingham</subfield><subfield code="b">Packt Publishing, Limited</subfield><subfield code="c">2024</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (290 p.)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Description based upon print version of record. - Friendship network introduction</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">We are living in the age of big data, and scalable solutions are a necessity. Network science leverages the power of graph theory and flexible data structures to analyze big data at scale. This book guides you through the basics of network science, showing you how to wrangle different types of data (such as spatial and time series data) into network structures. You'll be introduced to core tools from network science to analyze real-world case studies in Python. As you progress, you'll find out how to predict fake news spread, track pricing patterns in local markets, forecast stock market crashes, and stop an epidemic spread. Later, you'll learn about advanced techniques in network science, such as creating and querying graph databases, classifying datasets with graph neural networks (GNNs), and mining educational pathways for insights into student success. Case studies in the book will provide you with end-to-end examples of implementing what you learn in each chapter. By the end of this book, you'll be well-equipped to wrangle your own datasets into network science problems and scale solutions with Python.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Python (Computer program language)</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Computer algorithms</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Python (Langage de programmation)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algorithmes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">algorithms</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mutombo, Franck Kalala</subfield><subfield code="e">VerfasserIn</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Giske, Michael</subfield><subfield code="e">MitwirkendeR</subfield><subfield code="4">ctb</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">TUM01</subfield><subfield code="p">ZDB-30-ORH</subfield><subfield code="q">TUM_PDA_ORH</subfield><subfield code="u">https://learning.oreilly.com/library/view/-/9781805127895/?ar</subfield><subfield code="m">X:ORHE</subfield><subfield code="x">Aggregator</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">BO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield></datafield></record></collection>
id ZDB-30-ORH-104370823
illustrated Not Illustrated
indexdate 2024-12-18T08:48:46Z
institution BVB
isbn 9781805120179
1805120174
language English
open_access_boolean
owner DE-91
DE-BY-TUM
owner_facet DE-91
DE-BY-TUM
physical 1 online resource (290 p.)
psigel ZDB-30-ORH
publishDate 2024
publishDateSearch 2024
publishDateSort 2024
publisher Packt Publishing, Limited
record_format marc
spelling Farrelly, Colleen VerfasserIn aut
Modern Graph Theory Algorithms with Python Harness the Power of Graph Algorithms and Real-World Network Applications Using Python Colleen M. Farrely, Franck Kalala Mutombo ; foreword by Michael Giske
1st edition.
Birmingham Packt Publishing, Limited 2024
1 online resource (290 p.)
Text txt rdacontent
Computermedien c rdamedia
Online-Ressource cr rdacarrier
Description based upon print version of record. - Friendship network introduction
We are living in the age of big data, and scalable solutions are a necessity. Network science leverages the power of graph theory and flexible data structures to analyze big data at scale. This book guides you through the basics of network science, showing you how to wrangle different types of data (such as spatial and time series data) into network structures. You'll be introduced to core tools from network science to analyze real-world case studies in Python. As you progress, you'll find out how to predict fake news spread, track pricing patterns in local markets, forecast stock market crashes, and stop an epidemic spread. Later, you'll learn about advanced techniques in network science, such as creating and querying graph databases, classifying datasets with graph neural networks (GNNs), and mining educational pathways for insights into student success. Case studies in the book will provide you with end-to-end examples of implementing what you learn in each chapter. By the end of this book, you'll be well-equipped to wrangle your own datasets into network science problems and scale solutions with Python.
Python (Computer program language)
Computer algorithms
Python (Langage de programmation)
Algorithmes
algorithms
Mutombo, Franck Kalala VerfasserIn aut
Giske, Michael MitwirkendeR ctb
TUM01 ZDB-30-ORH TUM_PDA_ORH https://learning.oreilly.com/library/view/-/9781805127895/?ar X:ORHE Aggregator lizenzpflichtig Volltext
spellingShingle Farrelly, Colleen
Mutombo, Franck Kalala
Modern Graph Theory Algorithms with Python Harness the Power of Graph Algorithms and Real-World Network Applications Using Python
Python (Computer program language)
Computer algorithms
Python (Langage de programmation)
Algorithmes
algorithms
title Modern Graph Theory Algorithms with Python Harness the Power of Graph Algorithms and Real-World Network Applications Using Python
title_auth Modern Graph Theory Algorithms with Python Harness the Power of Graph Algorithms and Real-World Network Applications Using Python
title_exact_search Modern Graph Theory Algorithms with Python Harness the Power of Graph Algorithms and Real-World Network Applications Using Python
title_full Modern Graph Theory Algorithms with Python Harness the Power of Graph Algorithms and Real-World Network Applications Using Python Colleen M. Farrely, Franck Kalala Mutombo ; foreword by Michael Giske
title_fullStr Modern Graph Theory Algorithms with Python Harness the Power of Graph Algorithms and Real-World Network Applications Using Python Colleen M. Farrely, Franck Kalala Mutombo ; foreword by Michael Giske
title_full_unstemmed Modern Graph Theory Algorithms with Python Harness the Power of Graph Algorithms and Real-World Network Applications Using Python Colleen M. Farrely, Franck Kalala Mutombo ; foreword by Michael Giske
title_short Modern Graph Theory Algorithms with Python
title_sort modern graph theory algorithms with python harness the power of graph algorithms and real world network applications using python
title_sub Harness the Power of Graph Algorithms and Real-World Network Applications Using Python
topic Python (Computer program language)
Computer algorithms
Python (Langage de programmation)
Algorithmes
algorithms
topic_facet Python (Computer program language)
Computer algorithms
Python (Langage de programmation)
Algorithmes
algorithms
url https://learning.oreilly.com/library/view/-/9781805127895/?ar
work_keys_str_mv AT farrellycolleen moderngraphtheoryalgorithmswithpythonharnessthepowerofgraphalgorithmsandrealworldnetworkapplicationsusingpython
AT mutombofranckkalala moderngraphtheoryalgorithmswithpythonharnessthepowerofgraphalgorithmsandrealworldnetworkapplicationsusingpython
AT giskemichael moderngraphtheoryalgorithmswithpythonharnessthepowerofgraphalgorithmsandrealworldnetworkapplicationsusingpython